

Welcome to CGRU - AFANASY documentation!

Read The Funny Manuals!

Project Home Page [https://cgru.info]

Latest changes: v3.3.1

Last edit: Mar 12, 2023

Contents:

	Downloads
	MS Windows

	Linux

	Mac OS X

	Sources

	Installation
	Linux Packages

	MS Windows Archives

	Mac OS X

	Manual Project Build
	Linux

	MS Windows

	Mac OS X

	Configuration
	Config files

	Environment Variables
	Manual Environment Setup
	Required Variables

	Optional Variables

	Config Overrides

	Config Path Override

	Afanasy
	Server
	Launch Methods

	System Job
	Configuration

	Post Commands

	Wake-On-LAN

	Events
	JOB_DONE

	JOB_ERROR

	JOB_DELETED

	RENDER_ZOMBIE

	RENDER_SICK

	RENDER_NO_TASK

	RENDER_OVERLOAD

	Statistics
	Database Schema

	Database Setup

	Create Tables

	Server setup

	Web Page

	TIME-WAIT

	Render
	Launch Methods

	Attributes
	name

	address.family

	address.ip

	netifs[]

	time_launch

	time_register

	time_update

	wol_operation_time

	tasks[]

	capacity_used

	Editable Parameters
	user_name

	priority

	capacity

	max_tasks

	services

	services_disabled

	annotation

	State

	Resources
	cpu_num

	cpu_mhz

	cpu_loadavg[3]

	cpu_user

	cpu_nice

	cpu_system

	cpu_idle

	cpu_iowait

	cpu_irq

	cpu_softirq

	mem_total_mb

	mem_free_mb

	mem_cached_mb

	mem_buffers_mb

	swap_total_mb

	swap_used_mb

	hdd_total_gb

	hdd_free_gb

	hdd_rd_kbsec

	hdd_wr_kbsec

	hdd_busy

	net_recv_kbsec

	net_send_kbsec

	gpu_string

	gpu_gpu_util

	gpu_gpu_temp

	gpu_mem_total_mb

	gpu_mem_used_mb

	Paths Map
	MS Windows platform issues

	Services

	Parsers
	do

	self.percent(int)

	self.frame(int)

	self.percentframe(int)

	self.progress_changed(False/True)

	self.warning(False/True)

	self.error(False/True)

	self.badresult(False/True)

	self.finishedsuccess(False/True)

	self.activity(str)

	self.resources(str)

	self.log(str)

	self.report(str)

	Thumbnails
	appendFile(i_file, i_onthefly)

	Configuration

	Custom Resources
	example

	iostat

	nvidia-smi

	Properties

	Windows Must Die

	Pools
	Creation

	Attributes
	name

	parent

	time_creation

	pools_num

	pools_total

	renders_num

	renders_total

	run_tasks

	run_capacity

	task_start_finish_time

	Editable Parameters
	annotation

	capacity_host

	exit_no_task_time

	heartbeat_sec

	max_tasks_host

	new_nimby

	new_paused

	no_task_event_time

	overload_event_time

	power_host

	properties_host

	resources_update_period

	sick_errors_count

	services

	services_disabled

	tickets_pool

	tickets_host

	zombie_time

	idle_wolsleep_time

	idle_free_time

	busy_nimby_time

	idle_cpu

	busy_cpu

	idle_mem

	busy_mem

	idle_swp

	busy_swp

	idle_hddgb

	busy_hddgb

	idle_hddio

	busy_hddio

	idle_netmbs

	busy_netmbs

	State

	Tickets

	Watch
	Jobs

	Work

	Farm

	Users

	Modes
	pswd_visor

	pswd_god

	UI Levels

	Styles
	Light

	Dark

	Military

	Hello Kitty

	Hello Kitty Hell

	Web GUI
	Online Version

	HTTP Server Configuration

	Job
	Attributes
	name

	user_name

	host_name

	time_creation

	time_started

	time_done

	description

	blocks[]

	Editable Parameters
	priority

	max_running_tasks

	max_running_tasks_per_host

	hosts_mask

	hosts_mask_exclude

	pools

	depend_mask

	depend_mask_global

	time_wait

	ppa

	maintenance

	ignorenimby

	ignorepaused

	need_os

	need_properties

	command_pre

	command_post

	time_life

	annotation

	report

	State

	Job Block
	Attributes
	name

	tasks_num

	frame_first

	frame_last

	frames_inc

	frames_per_task

	Editable Parameters
	tasks_name

	sequential

	service

	parser

	working_directory

	environment

	command_post

	capacity

	capacity_coeff_min

	capacity_coeff_max

	multihost_min

	multihost_max

	multihost_max_wait

	multihost_master_on_slave

	multihost_service

	multihost_service_wait

	max_running_tasks

	max_running_tasks_per_host

	hosts_mask

	hosts_mask_exclude

	depend_mask

	tasks_depend_mask

	errors_retries

	errors_avoid_host

	errors_task_same_host

	errors_forgive_time

	task_max_run_time

	task_min_run_time

	task_progress_change_timeout

	need_power

	need_memory

	need_gpu_mem_mb

	need_cpu_freq_mgz

	need_cpu_cores

	need_cpu_freq_cores

	need_hdd

	need_properties

	command

	files[]

	Flags
	numeric

	varcapacity

	multihost

	masteronslave

	dependsubtask

	skipthumbnails

	skipexistingfiles

	checkrenderedfiles

	slavelostignore

	State

	Job Task
	Attributes
	name

	command

	files[]

	environment

	tst

	tdn

	str

	per

	frm

	pfr

	err

	hst

	act

	State

	Branch
	Creation

	Example

	Attributes
	name

	parent_path

	time_creation

	branches_num

	branches_total

	jobs_num

	jobs_total

	running_tasks_num

	running_capacity_total

	Editable Parameters
	priority

	max_tasks_per_second

	max_running_tasks

	max_running_tasks_per_host

	hosts_mask

	hosts_mask_exclude

	Flags
	create_childs

	solve_jobs

	solve_method

	solve_need

	User
	Attributes
	name

	host_name

	jobs_num

	running_jobs_num

	running_tasks_num

	time_register

	time_activity

	Editable Parameters
	priority

	max_running_tasks

	hosts_mask

	hosts_mask_exclude

	errors_retries

	errors_avoid_host

	errors_task_same_host

	errors_forgive_time

	jobs_life_time

	annotation

	API
	Python API
	Example

	Job Class

	Block Class

	Task Object

	JSON Protocol
	Job

	Get

	Actions

	afcmd
	afcmd cload

	afcmd db_check

	afcmd db_reset_all

	Software Integration
	3D Studio Max
	Submission Dialog

	Adobe After Effects
	Installation

	Tool Dialog
	General Tab

	Movie Tab

	Watch Job

	Shared Script Location

	Blender
	Setup

	Properties

	Job GUI
	Job

	Tasks

	Cinema 4D
	Afanasy Dialog

	Submission

	Scheduling

	Masks

	Clarisse iFX
	In-App Submission
	General Tab

	Settings Tab

	Conditions Tab

	AfWatch

	WebGUI

	Setup
	Shelf Item

	AfStarter

	Developers

	Fusion
	Menu

	Dialog

	Job GUI

	Setup

	Houdini
	Afanasy ROP
	General

	Parameters

	Environment

	Distribute Simulation

	Separate Render

	Custom Command

	SOHO

	ROP Examples

	Distributed Simulations
	How It Works

	What We Should Do

	Step-By-Step

	Afanasy Job

	Afanasy TOP Scheduler
	Scheduling Parameters

	Submit Graph As Job

	Tasks Parameters

	Adjustment Parameters

	Setup

	Maya
	meTools for Afanasy

	Stand-Alone Dialog

	The Simplest MEL Dialog

	CGRU Maya

	Natron
	Afanasy Node
	General

	Scheduling

	MultiWrite

	Complex Situation

	Render Selected

	Setup
	Manual Setup

	Nuke
	CGRU Menu

	Afanasy Gizmo
	General

	Parameters

	MultiWrite

	Advanced

	Environment

	Complex Job (Precomps)

	Render Selected

	Setup

	Softimage XSI
	Afanasy Window
	Submission

	Scheduling

	VariRender

	Keeper
	Description

	Start Keeper

	Launch System commands

	HTTPS Server

	AfStarter
	Supported software

	Scene Settings

	Afanasy Job Settings

	Regular Expressions
	RegExp Checker

	Rules
	Player
	Examples

	Examples

	How To
	Appending new tasks/blocks to an existing job
	JSON API

	Python af module

	Python afcmd module

	Known limitations
	Numeric block

	afwatch

	Coding Rules

	The Nimby Situation
	Spending much time with machines do not forget that we are humans

	Do not let producers to torture you much

	License

	About
	Companies

	Projects

	History

	Paper

	Contacts

	Changes Log
	v3.3.1

	v3.3.0

	v3.2.2

	v3.2.1

	v3.2.0

	v3.1.1

	v3.1.0

	v3.0.0

	v2.3.1

	v2.3.0

	v2.2.3

	v2.2.2

	v2.2.1

	v2.2.0

	v2.1.0

	v2.0.8

	v2.0.7

	v2.0.6

	v2.0.5

	v2.0.4

	v2.0.3

	v2.0.2

	v2.0.1

	v2.0.0

	v1.7.0

	v1.6.12

	v1.6.11

	v1.6.10

	v1.6.9

	v1.6.8

	v1.6.7

	v1.6.6

	v1.6.5

	v1.6.4

	v1.6.3

	v1.6.2

	v1.6.1

	v1.6.0

	v1.5.5

	v1.5.4

	v1.5.3

	v1.5.2

	v1.5.1

	v1.5.0

	v1.4.5

	v1.4.4

	v1.4.3

	v1.4.2

	v1.4.1

	v1.4.0

	v1.3.1

	v1.3.0

	v1.2.4

	v1.2.3

	v1.2.2

	v1.2.1

	v1.2.0

	v1.1.0

	v1.0.0

	v2009.11.12

	v2009.10.07

	v2009.09.16

	v2009.08.24

	v2009.08.20

	v2009.08.12

Downloads

Browse all files and versions:

https://sourceforge.net/projects/cgru/files

MS Windows

ZIP Archive:

https://sourceforge.net/projects/cgru/files/3.3.1/cgru.3.3.1.windows.zip

64Bit, Python 3.10 PySide2, Qt 5.15.2, MSVC 2019.

Linux

	
	CentOS 7 (RHEL)

	https://sourceforge.net/projects/cgru/files/3.3.1/cgru.3.3.1.CentOS-7_x86_64.tar.gz

	
	Debian 10

	https://sourceforge.net/projects/cgru/files/3.3.1/cgru.3.3.1.debian10_amd64.tar.gz

	
	Debian 11

	https://sourceforge.net/projects/cgru/files/3.3.1/cgru.3.3.1.debian11_amd64.tar.gz

	
	Fedora 36

	https://sourceforge.net/projects/cgru/files/3.3.1/cgru.3.3.1.Fedora-37_x86_64.tar.gz

	
	Open SUSE 15.4

	https://sourceforge.net/projects/cgru/files/3.3.1/cgru.3.3.1.openSUSE-15.4_x86_64.tar.gz

	
	Rocky Linux 8.6 (RHEL)

	https://sourceforge.net/projects/cgru/files/3.3.1/cgru.3.3.1.Rocky-8.7_x86_64.tar.gz

	
	Rocky Linux 9.0 (RHEL)

	https://sourceforge.net/projects/cgru/files/3.3.1/cgru.3.3.1.Rocky-9.1_x86_64.tar.gz

	
	Ubuntu 20.04 LTS

	https://sourceforge.net/projects/cgru/files/3.3.1/cgru.3.3.1.ubuntu20.04_amd64.tar.gz

	
	Ubuntu 22.04 LTS

	https://sourceforge.net/projects/cgru/files/3.3.1/cgru.3.3.1.ubuntu22.04_amd64.tar.gz

All binaries (packages) are 64 bit.

Mac OS X

There is no special release for this platform yet, but it is fully supported by sources. So you can build Afanasy manually.

Sources

Latest release snapshot:

https://sourceforge.net/projects/cgru/files/3.3.1/cgru.3.3.1.zip

Repository:

https://github.com/CGRU/cgru

Installation

Linux Packages

Download
the latest release and unpack.

	Server: You need to install afanasy-server package. Also you can to install afanasy-render package to monitor its resources, and should limit some heavy tasks not to run on server machine.

	Workstation: You need to install cgru package.

	Render: You need to install afanasy-render package.

CGRU will be installed in /opt/cgru folder.

	Structure

	Description

	Depends

	
	cgru

	afanasy-render

	afanasy-common

	cgru-common

	afanasy-qtgui

	cgru-common

	afanasy-server

	afanasy-common

	cgru-common

	cgru: Start menu item.

	PySide(1-2) or PyQt(4-5)

	cgru-common: All files,
except Afanasy binaries.

	

	afanasy-common: Afanasy
binaries, except GUI.

	PostgreSQL libraries
(libpq)

	afanasy-render: Afanasy
render startup scripts.

	

	afanasy-server: Afanasy
server startup scripts.

	PostgreSQL server,
apache, php, php-pgsql

	afanasy-qtgui: Afanasy
Qt GUI binary.

	Qt libraries

	PostgreSQL server and Apache+PHP needed for afserver to store and view statistics only.

Installation Methods:

	Install and uninstall scripts provided with the packages.

	Various GUI utilities native for each Linux distribution, can install it.

	Commands like dpkg -i for .deb’s and rpm -i for .rmp’s.

	The best way is to put this packages in you local company Linux repository. And to use native Linux ways to install and update software. In this way Linux system solves packages dependences itself.

MS Windows Archives

Download
the latest release and unpack. Use Keeper to launch applications.

	Server: Launch afserver.

	Render: Launch afrender.

	Workstation: Use Keeper to launch render client and other CGRU applications.

Mac OS X

There is no release for this platform, yet. But you can build project yourself.

Manual Project Build

You can build project using cmake.

The project is hosted on GitHub: https://github.com/CGRU/cgru

If you want just to compile (not to develop) better to use tags.

You can simple
Download
an archive with the latests release sources.

Needed libraries:

	Python: >= 2.6

	Qt: Needed for Qt-GUI only

	PostgreSQL: Optional, needed by server for statistics only

Linux

All needed libraries can be installed by a script:

cd cgru/utilities
./install_depends_devel.sh

Run build script:

cd cgru/afanasy/src/project.cmake
./build.sh

MS Windows

You need MS Visual Studio 2015 and cmake.
Cmake will generate Visual Studio project.

Go to cgru/afanasy/src/project.cmake and run win_build_msvc.cmd.

Mac OS X

You should be familiar with building projects on Mac.

You can use macports or homebrew to install needed libraries and cmake.

cd cgru/afanasy/src/project.cmake
./build.sh

Configuration

Create config.json file in a CGRU root folder:

{"cgru_config":{
 "af_servername":"afanasy",
 "":""
}}

It should at least contain Afanasy server hostname or IP address.
Read cgru/config_default.json parameters comments for help.

Config files

CGRU configuration files based JSON.
One config file can include other, where parameters can be overridden.
Config file can contain OS specific section,
which parameters will be read only if client platform parameters matches OS section name.

At first cgru/config_default.json is read, where global parameters are set.
It includes cgru/afanasy/config_default.json which configures Afanasy specific parameters.
At last it tries to load cgru/config.json, where you should override some your company specific parameters.
At least you should specify Afanasy server location in it.

CGRU Keeper and AfWatch stores settings in $HOME/.cgru/config.json on UNIX
and %APPDATA%/cgru/config.json on MS Windows OS.
It is read with the same rules as the main config.
User can use it to set its own properties and override global config settings.

Each parameter should be preset only once in a config file.
If there will several parameters with the same name in a same file, which will be chosen is undefined.
Parameters order plays no role.
Included files are read after the end of file, no matter where include line is.
If in the next included file there will be a parameter with the same name, it value will be overridden.

See also

JSON syntax reference: http://json.org

Better to check config with afcmd.
Just run this command with no arguments.
On error it will output error message, position and some text around it.
You can also view configuration in Keeper,
but it can not to start with bad config at all.
Keeper Configuration window will display result configuration and each config file contents in the order they where read (included).

Note

There are no comments in JSON syntax.
But some ways to comment JSON files exist.
For example you can create an object with no name:
"":"Some comment text."
Or create an object with some unused name.
To disable (comment) some parameter you can change it name to unused.
For example you can just prefix name with “-“.

Environment Variables

Common user does not need to setup environment variables manually.
Use Keeper or start scrips they will setup environment.
To setup a console you should go to CGRU root folder and source setup script.

cd cgru
source ./setup.sh

Manual Environment Setup

Required Variables

	CGRU_LOCATION - CGRU root folder.

	AF_ROOT - AFANASY root folder (cgru/afanasy).

	PYTHONPATH - To import CGRU and AFANASY Python modules:

	cgru/lib/python - CGRU Python general library path.

	cgru/afanasy/python - Afanasy Python library path.

Optional Variables

	CGRU_VERSION - CGRU version string, will be shown in AfWatch and Browser. May be any. You can add some useful info to real version at work.

	AF_HOSTNAME - Override hostname for Afanasy. Useful to run several clients on the same machine.

	AF_USERNAME - Override user name for Afanasy.

	PATH - Run commands.

	cgru/bin - CGRU tools.

	cgru/afanasy/bin - AFANASY applications.

Config Overrides

You can override any config parameter.

By Command Argument:

Use --[param_name] param_value arguments to an Afanasy executable. For example to make afwatch to connect to other afanasy server type:

afwatch --af_servername otherserver

By Environment Variable:

Set CGRU_[PARAM_NAME] environment variable. For example to setup console to use other server port type:

export CGRU_AF_SERVERPORT=51111

Python API will take environment overrides too.

Config Path Override

You can override the path to a custom config file using the CGRU_CUSTOM_CONFIG environment variable. This will be loaded last, but before ~/.cgru/config.json

Afanasy

	Server
	Launch Methods

	System Job
	Configuration

	Post Commands

	Wake-On-LAN

	Events
	JOB_DONE

	JOB_ERROR

	JOB_DELETED

	RENDER_ZOMBIE

	RENDER_SICK

	RENDER_NO_TASK

	RENDER_OVERLOAD

	Statistics
	Database Schema

	Database Setup

	Create Tables

	Server setup

	Web Page

	TIME-WAIT

	Render
	Launch Methods

	Attributes
	name

	address.family

	address.ip

	netifs[]

	time_launch

	time_register

	time_update

	wol_operation_time

	tasks[]

	capacity_used

	Editable Parameters
	user_name

	priority

	capacity

	max_tasks

	services

	services_disabled

	annotation

	State

	Resources
	cpu_num

	cpu_mhz

	cpu_loadavg[3]

	cpu_user

	cpu_nice

	cpu_system

	cpu_idle

	cpu_iowait

	cpu_irq

	cpu_softirq

	mem_total_mb

	mem_free_mb

	mem_cached_mb

	mem_buffers_mb

	swap_total_mb

	swap_used_mb

	hdd_total_gb

	hdd_free_gb

	hdd_rd_kbsec

	hdd_wr_kbsec

	hdd_busy

	net_recv_kbsec

	net_send_kbsec

	gpu_string

	gpu_gpu_util

	gpu_gpu_temp

	gpu_mem_total_mb

	gpu_mem_used_mb

	Paths Map
	MS Windows platform issues

	Services

	Parsers
	do

	self.percent(int)

	self.frame(int)

	self.percentframe(int)

	self.progress_changed(False/True)

	self.warning(False/True)

	self.error(False/True)

	self.badresult(False/True)

	self.finishedsuccess(False/True)

	self.activity(str)

	self.resources(str)

	self.log(str)

	self.report(str)

	Thumbnails
	appendFile(i_file, i_onthefly)

	Configuration

	Custom Resources
	example

	iostat

	nvidia-smi

	Properties

	Windows Must Die

	Pools
	Creation

	Attributes
	name

	parent

	time_creation

	pools_num

	pools_total

	renders_num

	renders_total

	run_tasks

	run_capacity

	task_start_finish_time

	Editable Parameters
	annotation

	capacity_host

	exit_no_task_time

	heartbeat_sec

	max_tasks_host

	new_nimby

	new_paused

	no_task_event_time

	overload_event_time

	power_host

	properties_host

	resources_update_period

	sick_errors_count

	services

	services_disabled

	tickets_pool

	tickets_host

	zombie_time

	idle_wolsleep_time

	idle_free_time

	busy_nimby_time

	idle_cpu

	busy_cpu

	idle_mem

	busy_mem

	idle_swp

	busy_swp

	idle_hddgb

	busy_hddgb

	idle_hddio

	busy_hddio

	idle_netmbs

	busy_netmbs

	State

	Tickets

	Watch
	Jobs

	Work

	Farm

	Users

	Modes
	pswd_visor

	pswd_god

	UI Levels

	Styles
	Light

	Dark

	Military

	Hello Kitty

	Hello Kitty Hell

	Web GUI
	Online Version

	HTTP Server Configuration

	Job
	Attributes
	name

	user_name

	host_name

	time_creation

	time_started

	time_done

	description

	blocks[]

	Editable Parameters
	priority

	max_running_tasks

	max_running_tasks_per_host

	hosts_mask

	hosts_mask_exclude

	pools

	depend_mask

	depend_mask_global

	time_wait

	ppa

	maintenance

	ignorenimby

	ignorepaused

	need_os

	need_properties

	command_pre

	command_post

	time_life

	annotation

	report

	State

	Job Block
	Attributes
	name

	tasks_num

	frame_first

	frame_last

	frames_inc

	frames_per_task

	Editable Parameters
	tasks_name

	sequential

	service

	parser

	working_directory

	environment

	command_post

	capacity

	capacity_coeff_min

	capacity_coeff_max

	multihost_min

	multihost_max

	multihost_max_wait

	multihost_master_on_slave

	multihost_service

	multihost_service_wait

	max_running_tasks

	max_running_tasks_per_host

	hosts_mask

	hosts_mask_exclude

	depend_mask

	tasks_depend_mask

	errors_retries

	errors_avoid_host

	errors_task_same_host

	errors_forgive_time

	task_max_run_time

	task_min_run_time

	task_progress_change_timeout

	need_power

	need_memory

	need_gpu_mem_mb

	need_cpu_freq_mgz

	need_cpu_cores

	need_cpu_freq_cores

	need_hdd

	need_properties

	command

	files[]

	Flags
	numeric

	varcapacity

	multihost

	masteronslave

	dependsubtask

	skipthumbnails

	skipexistingfiles

	checkrenderedfiles

	slavelostignore

	State

	Job Task
	Attributes
	name

	command

	files[]

	environment

	tst

	tdn

	str

	per

	frm

	pfr

	err

	hst

	act

	State

	Branch
	Creation

	Example

	Attributes
	name

	parent_path

	time_creation

	branches_num

	branches_total

	jobs_num

	jobs_total

	running_tasks_num

	running_capacity_total

	Editable Parameters
	priority

	max_tasks_per_second

	max_running_tasks

	max_running_tasks_per_host

	hosts_mask

	hosts_mask_exclude

	Flags
	create_childs

	solve_jobs

	solve_method

	solve_need

	User
	Attributes
	name

	host_name

	jobs_num

	running_jobs_num

	running_tasks_num

	time_register

	time_activity

	Editable Parameters
	priority

	max_running_tasks

	hosts_mask

	hosts_mask_exclude

	errors_retries

	errors_avoid_host

	errors_task_same_host

	errors_forgive_time

	jobs_life_time

	annotation

	API
	Python API
	Example

	Job Class

	Block Class

	Task Object

	JSON Protocol
	Job

	Get

	Actions

	afcmd
	afcmd cload

	afcmd db_check

	afcmd db_reset_all

Server

Launch Methods

	MS Windows script

start\AFANASY_afserver.cmd

	UNIX script

start/AFANASY/_afserver.sh

	Linux daemon when Linux packages are installed

sudo systemctl start afserver

	Setup CGRU environment and launch a command:

cd cgru
source ./setup.sh
afserver

System Job

System job is designed to execute system tasks on render farm (such as post commands).
When server needs to execute some command it appends system job with a task.

Note

Your farm should be configured to execute have system services to execute job post commands (remove rendered scenes).

You can explore system job by Watch GUI in super user mode,
to manipulate it’s parameters to control its running.

[image: ../_images/sysjob_job.png]

System Job

[image: ../_images/sysjob_tasks.png]

System Job Tasks

If error system task can’t be restarted (a number of error retries reached the maximum value) it will be deleted.
It needed to prevent the growth of system tasks number.

You can watch system job log and its task log.
When error occurs the log will be appended with the command output.

To reset system commands queue you can restart block or task.

Configuration

	"af_sysjob_tasklife": 1800

Maximum system task age in seconds.
If task age will equal to this number it will be treated as an error task.
It needed to prevent the growth of tasks number, if some task(s) can’t be executed (restarted).

	"af_sysjob_tasksmax": 1000

Maximum number of running or ready tasks.
If number of tasks will equal to this number, no new tasks will be created.
But commands will not be lost, they will be stored in special list, to wait for some tasks will be done.
It needed to prevent the growth of tasks number, if system job running will be stopped for some time (may be all hosts appeared in black lists).
Tasks need more memory and CPU time then a simple commands list.

	"af_sysjob_postcmd_service": "postcmd"

Service type for Post Commands system block.

	"af_sysjob_events_service":"events"

Service type for Events system block.

	"af_sysjob_wol_service": "wakeonlan"

Service type for Wake-On-LAN system block.

	"af_render_cmd_wolsleep": "wolsleep"

Sleep command performed by a render client.

	"af_render_cmd_wolwake": "wolwake"

Wake command constructed by a server and performed on a online client by the system job.

Post Commands

Post commands are executed on a job deletion.
It is designed to clean up temporary files, that are not needed w/o the job.
In a most common case, it is a temporary scene file to render.

Most submission scripts copy (save) current scene to some temporary file.
This way artist can continue to make and save modifications in the current opened scene during render.
Scene will be rendered at the state it was submitted.

Post commands are executed by renders via server system job post_commands block.

Wake-On-LAN

You can setup Afanasy to Wake-On-LAN machines.

Wake-On-LAN work-flow:

	Server sends a message to client to ask him to sleep.

	Client receives message from server to sleep.

	Client executes a wolsleep command which can be customized in Afanasy configuration.

	Client falls a sleep.

	Server does not receive updates from client and make it offline.

	Server “decides” to wake a render up.

	Server adds a task wolwake mac1 .. macN to system job wake-on-lan block. Command can be customized in Afanasy configuration.

	Another online and ready render executes the task.

	This task sends magic packet for each mac address of a sleeping render to a broadcast address. It is a small Python script provided with CGRU.

	Render wakes up.

You can wake and sleep renders by afwatch GUI and afcmd command.

Events

Events are generated by server.
When event happened, job and user data is pushed to event service as a command by JSON.
If event is emitted by render, render and all parent pools will be written too.
Event service Python class reads its command - JSON data and can generate any command to execute.
So event task receives data by a command, do something with this data and can construct a real command to execute as a task process.

JOB_DONE

Some job became done.

JOB_ERROR

Some job task produced an error.

JOB_DELETED

Job has been deleted.

RENDER_ZOMBIE

Render stopped to send updates to server for
zombie_time seconds.

RENDER_SICK

Render produced
sick_errors_count
errors from different users in a row and got SICK state.

RENDER_NO_TASK

Render has no task for
no_task_event_time seconds.

RENDER_OVERLOAD

Render has low free memory or disk or swap.
How much resources considered as low, you can configure by JSON config parameters:

	af_render_overflow_mem - percentage of a free memory.

	af_render_overflow_swap - percentage of a free swap.

	af_render_overflow_hdd - percentage of a free disk space.

By default this parameters are equal to -1 and this means that the resource check is disabled.
Practically good free percentage to emit event is 1,
as an overloaded machine never reaches zero free memory or hdd.

The next time event will be emitted after
overload_event_time seconds.

There is already default Python service class:
cgru/afanasy/python/services/events.py
It designed to send emails.

Example of a custom data to send emails:

{
 "emails":["some@email.com"],
 "events":
 {
 "JOB_ERROR":{"methods":["email"]},
 "JOB_DONE":{"methods":["email"]}
 }
}

User and job custom data objects are simple merged.
So user can have information about email and job about events.
If user will have email and events in custom data all it jobs will send emails.

You can write any custom Python service class, for example:
cgru/afanasy/python/services/events_local.py

And set it as System job events block service name in your configuration file:
"af_sysjob_events_service":"events_local"

Statistics

Afanasy server can store jobs and tasks statistics in SQL database.
It uses PostgreSQL engine.
On job deletion and task finish (with any result) server insert some job and task data into database tables.

Database Schema

afanasy=# \d jobs;
 Table "public.jobs"
 Column | Type | Collation | Nullable | Default
----------------+------------------------+-----------+----------+---------
 annotation | character varying(512) | | |
 blockname | character varying(512) | | |
 capacity | integer | | | 0
 description | character varying(512) | | |
 folder | character varying(512) | | |
 jobname | character varying(512) | | |
 hostname | character varying(512) | | |
 service | character varying(512) | | |
 tasks_done | integer | | | 0
 tasks_quantity | integer | | | 0
 run_time_sum | bigint | | | 0
 time_done | bigint | | | 0
 time_started | bigint | | | 0
 username | character varying(512) | | |
 serial | bigint | | | 0
 id_block | integer | | | 0

afanasy=# \d tasks;
 Table "public.tasks"
 Column | Type | Collation | Nullable | Default
---------------+-------------------------+-----------+----------+---------
 annotation | character varying(512) | | |
 blockname | character varying(512) | | |
 capacity | integer | | | 0
 command | character varying(4096) | | |
 description | character varying(512) | | |
 error | integer | | | 0
 errors_count | integer | | | 0
 folder | character varying(512) | | |
 frame_pertask | bigint | | | 0
 hostname | character varying(512) | | |
 jobname | character varying(512) | | |
 resources | character varying(4096) | | |
 service | character varying(512) | | |
 starts_count | integer | | | 0
 time_done | bigint | | | 0
 time_started | bigint | | | 0
 username | character varying(512) | | |
 serial | bigint | | | 0
 id_block | integer | | | 0
 id_task | integer | | | 0

Database Setup

	Edit Postgre SQL client authentication configuration file pg_hba.conf.

Its location depends on Linux distributive. For example:

Debian, Ubuntu: /etc/postgresql/ [version] /main/pg_hba.conf

CentOS, Fedora, openSUSE: /var/lib/pgsql/data/pg_hba.conf

make install: /usr/local/pgsql/data/pg_hba.conf

Add this line:
local afanasy afadmin password
Read comments in this file to know what does it mean.
(If problems with authentication try trust for all methods.)

	Restart database

	Create afanasy database and user

sudo su - postgres
createdb afanasy
psql afanasy
CREATE USER afadmin PASSWORD 'AfPassword';

Create Tables

	Go into CGRU root folder:
cd /opt/cgru

	Source setup:
source ./setup.sh

	Check database connection:
afcmd db_check

	Program should output an error or print “Database connection is working” if everything is ok.

	Create required tables:
afcmd db_reset_all

	This command also delete old tables if they exists.

Server setup

You need to install a web server with PHP and PGSQL modules.
Any Linux distribution have this packages.

In most Linux-es all this can be provided by packages:
apache2 libapache2-mod-php php php-pgsql

The site is located in cgru/afanasy/statistics folder.

Web Page

There is a Web page to view Afanasy SQL statistics database.

[image: ../_images/stat_tasks.png]

Statistics Tasks Graph Page

TIME-WAIT

TIME-WAIT is a special socket state, needed to ensure that all packages will not be lost.
If server calls close() function first, its socket will fall into this state.
To ensure that the connection last package is processed, it will wait:

TIME-WAIT = 2 * MSL (Maximum Segment Lifetime)

This is the reason why server should not call close() first.
On a big amount of clients (~1000), application can reach 2^16 ports limit.
Afanasy waits for about 2sec for client to close socket first.
To check socket connected state we just try to write in it.
SIGPIPE is ignored by Afanasy

To check sockets state you can:

netstat -nat | grep 51000 | wc -l
netstat -nat | egrep ':51000.*:.*TIME_WAIT' | wc -l
ss -tan state time-wait | wc -l
ss -tan 'sport = :51000' | awk '{print $(NF)" "$(NF-1)}' | sed 's/:[^]*//g' | sort | uniq -c

Render

Render is a client application.
It runs on a remote host and communicates with server.
Server sends tasks to render to run.

Launch Methods

	MS Windows script

start\AFANASY\99.render.cmd

	UNIX script

start/AFANASY/_afrender.sh

	Linux daemon when packages are installed

sudo systemctl start afrender

	Setup CGRU environment and launch a command:

cd cgru
source ./setup.sh
afrender

To register a render already in [nimby|NIMBY] state use command:

afrender [nimby|NIMBY]

Attributes

name

Each render has an unique name. If new render comes to server with the name which already exists, server will not register it. Users and jobs hosts masks are based on render names and Regular Expressions (they are Perl-like).
To launch another render on the same host use AF_HOSTNAME environment variable to override render name.

address.family

address.ip

IP address with family (IPv4 or IPv6).

netifs[]

Network interfaces information (name, mac and ips).

time_launch

Time the application was launched.

time_register

Time the render was registered on server.

time_update

Last time the render has update its resources usage.

wol_operation_time

Time the last any Wake-On-LAN operation was performed.

tasks[]

Running tasks number and some its attributes (user, job, etc.).

capacity_used

Capacity used by running tasks.

Editable Parameters

user_name

Who launched a render. Can be changed only by administrators. Note that process do not change uid. This value for afanasy only.

priority

Render with greater priority get task first.

capacity

You can override host farm setup capacity.

max_tasks

You can override host farm setup maximum running tasks.

services

Services that render can run.
If empty it it configured by pool.

services_disabled

You can disable some services.

annotation

Annotate render GUI item.

State

	Online

	ONL

	Is online.

	Offline

	OFF

	Is offline.

	nimby

	Nby

	Is taken by his user. Only render user can render on it.

	NIMBY

	NBY

	Is taken by his user and he don’t want to render on it.

	Busy

	RUN

	Executing one or more tasks.

	Dirty

	DRT

	Capacity changed or some service disabled.

	WOLFalling

	WFL

	Is falling a sleep. It was asked to sleep, but still online.

	WOLSleeping

	WSL

	Is sleeping.

	WOLWaking

	WWK

	Is waking up. It was asked to wake up but still is not online.

	Paused

	PAU

	Is paused, like super-Nimby, never will be free automatically.

	Sick

	SIC

	Is seek, produced errors only from different users.

Resources

cpu_num

CPUs x Cores number.

cpu_mhz

Fist Processor frequency.

cpu_loadavg[3]

Load average.

cpu_user

User usage percentage.

cpu_nice

User ‘nice’ usage percentage (low priority processes).

cpu_system

System usage percentage.

cpu_idle

Idle percentage (CPU free).

cpu_iowait

Waiting for I/O complete percentage.

cpu_irq

Interrupts servicing percentage.

cpu_softirq

Soft interrupts servicing percentage.

mem_total_mb

Total amount of memory in megabytes.

mem_free_mb

Free memory in megabytes.

mem_cached_mb

Cached memory in megabytes.

mem_buffers_mb

Buffered memory in megabytes.

swap_total_mb

Total swap space in megabytes.

swap_used_mb

Used swap in megabytes.

hdd_total_gb

Total disk space in gigabytes.

hdd_free_gb

Available free disk space in gigabytes (in root - ‘/’).

hdd_rd_kbsec

Disk reading in kilobytes per second.

hdd_wr_kbsec

Disk writing in kilobytes per second.

hdd_busy

Percentage of system ticks spend for the disk IO.

net_recv_kbsec

Network receiving traffic in kilobytes per second.

net_send_kbsec

Network sending traffic in kilobytes per second.

gpu_string

The official product name of the GPU.
It will be empty, if GPU is not detected.
You can check it length for zero to find out GPU exists.

	NVIDIA cards are processed via nvidia-smi [https://developer.nvidia.com/nvidia-system-management-interface] command line utility.
So nvidia-smi must be in PATH.

	Linux: Any NVIDIA driver installation from some repository or official site adds this binary to PATH, you should do nothing to get it work.

	Windows: NVIDIA driver installation should add nvidia-smi.exe to C:\Program Files\NVIDIA Corporation\NVSMI folder.
The folder can differ on some custom installation.
You should add that folder to PATH. You can do this via system environment settings.
Better not to modify the system environment permanently, but to do it by demand via scripting.
You can create a setup_gpu.cmd script in CGRU root folder with a following content:

set "PATH=C:\Program Files\NVIDIA Corporation\NVSMI;%PATH%"

	macOS: Was not checked. Like on other platforms nvidia-smi should be in PATH.

For now only NVIDIA cards are supported.

gpu_gpu_util

GPU utilization of core GPU.

gpu_gpu_temp

GPU temperature of core GPU.

gpu_mem_total_mb

GPU total memory. You can check for zero, to find out that GPU was detected.

gpu_mem_used_mb

GPU used memory.

Paths Map

CGRU has an ability to map paths.
Every client can have own paths map file to translate paths to server and from server.

Paths map is described in config files by pathsmap object.
It is an arrays of ["CLIENT","SERVER"] paths pairs:

{
 "pathsmap":[
 ["//server/projects/","/mnt/prj/"],
 ["//server/tools/","/mnt/tools/"]
],
}

When job constructs (on the client side) all commands and working directories are translated from client to server.
When task starts (on the client side) all commands and working directories are translated from server to client.
Server does know nothing about paths map.

MS Windows platform issues

	You can write only / slashes in a config.
It will try both slashes directions.
Some applications allows client to use and \ and / slashes, so pattern will be matched in any case.

	When client searches a pattern it converts paths in lower case.
So no matter how client wrote a path //server/projects/, //SERVER/PROJECTS/, //SERVER/projects/ or //server/PROJECTS/.
It will work any way.

	Module (Python Class) can works in UnixSeparators mode.
During translation from server to client it uses / slashes for client paths.
For example NUKE uses only / slashes on any platform.

A part of a real working config.json with map example:

{
 "OS_windows":{
 "pathsmap":[
 ["P:/", "/ps/prj/"],
 ["//box/project/", "/ps/prj/"],
 ["Q:/", "/ps/prj2/"],
 ["//box2/project/", "/ps/prj2/"],
 ["//sun/libs/", "/ps/lib/"],
 ["//sun/vault/", "/ps/vault/"],
 ["T:/", "/ps/etc/"],
 ["c:/ps/", "/ps/"],
 ["c:/temp/", "/tmp/"]
]
 }
}

Services

Service is a Python class that will be instanced by render on each incoming task.

Python classes stored in

cgru/afanasy/python/services

and based from

cgru/afanasy/python/services/service.py

The class stands for:

	Define default service parser, that you can override.

	Instance needed parser and pass task output data it.

	Method to fill in numeric block pattern with frames.

	Method to transfer commands and paths from server to client (different OS-es can have different paths).

	Check rendered files.

	Generate thumbnails.

	Check exit status for tasks that can return non zero exit status on success.

	Method to insert in task command variable capacity coefficient.

	Method to fill in multi-host task command with captured hosts.

You can write custom service class based on service.py to override any functions for customization.

Parsers

Parser read task output and calculate running percentage and frame (for multiply frames per render).

Python classes stored in

cgru/afanasy/python/parsers

and based from

cgru/afanasy/python/parsers/parser.py

Parser class stands for:

	Parse task progress frame and percent of a current frame and a total(all frames) percentage.

	Parse output for rendered file to make thumbnails, that render will send to server.

	Stop task on bad output.

	Produce a warning just for user notification.

	Mark success finish as error on bad output.

	Append some string to task log for some useful info.

	Make some job report what will be shown in GUI job item as something important.

	Parse some resources, for example triangles count or pear memory usage.

To write a custom parser you should inherit base parser class and override main function:

do

def do(self, i_args):

Input arguments are passed via dictionary:

	i_args[‘mode’] (str)

	RUN: Task is running.

	EXIT_CODE:STOP_TIME: Task is not running, process exit status and stop time if task was asked to stop (zero if was not).

	i_args[‘pid’] (int)

Task process identifier.

	i_args[‘data’] (str)

Current portion of a task process output.

	i_args[‘resources’] (str)

Host resources JSON.
Designed to query/modify for self.resources construction.

This method can return nothing or a string.
In string case this string will be stored instead of incoming data.
You can use it to produce some message, by appending incoming data with your information.
Or you can cut some useless information.

All parser notifications and actions are transferred by setting class members:

self.percent(int)

Task execution percentage.

self.frame(int)

Task execution frame. May set for multiply frame tasks to show current frame in GUI.

self.percentframe(int)

Task execution current frame percentage.

self.progress_changed(False/True)

Whether the task progress has changed.
By default is True when any output with a not zero length was produced.

self.warning(False/True)

Some warning. To notify user only.

self.error(False/True)

Error. Render will try to terminate a task and later kill if task ignored termination.

self.badresult(False/True)

Error. Task will finish with an error.
In this case render will not try to kill it, sometimes you don’t need kill and want to wait finish.
You can use at the end of task execution, at final result check.

self.finishedsuccess(False/True)

Success. Task will finish with a success.
Parser can consider that task is already done and should not to continue.
Render will terminate(kill) task process and send “done” status to server(not an “error”).

self.activity(str)

Some string to inform user about task running stage.
For example: Nuke current rendering view when stereo, Movie Maker convert or encode stage.

self.resources(str)

Any custom resources string. For example: triangles:155000000.

self.log(str)

Some string to append to the task server log.
For example when server or parser noticed some error, you can specify it here.

self.report(str)

Some info string for an entire job.
GUIs will show it a job item(not task).
Some most important info should be here.
Most suitable for a job with one or several big tasks. For example you can put big file on FTP and show speed here.

Thumbnails

Thumbnails are small previews of a task rendered files.
They can be generated by render and shown by GUI.

If task (block) has files parameter or parser finds images thumbnail will be generated.
Thumbnails are generated by afrender after task process finish.
Python service doPost function returns commands for it.
Thumbnail files binary data is send by afrender to afserver along with task output.
Server stores all files that afrender sends on task finis.
You can get tasks thumbnails from afserver by HTTP GET method.

If parser found some image during output parsing it can call a special function:

appendFile(i_file, i_onthefly)

	i_file

Path to the image file to append.

	i_onthefly

	False
Thumbnail will be generated after task process finish. This is a most common method.

	True
Thumbnail will be generated just after this function call.
Task probably will be still running in this case.
This can be useful for a long time task that process many images.
Good example is a movie encoding or dailies creation.

Configuration

{
 "af_thumbnail_extensions":["exr","dpx","jpg","jpeg","png","tif","tiff","tga"],
 "af_thumbnail_cmd":"convert -identify \"%(image)s\" -thumbnail \"100x100^\" -gravity center -extent 100x100 \"%(thumbnail)s\"",
}

Custom Resources

You can write custom resources meter(s) on Python.
Render instances a class and runs update method periodically (each time the Render updates).
You can inherit base resbase class and set its properties.

There are some custom resources meters in Afanasy:

example

Just an example.
It increments a value from 0 to 100, changes label text, plotter and label size, graph and back color.

iostat

Shows parsed output of Linux iostat command.
Graph value is utilization percentage (or %busy).

nvidia-smi

Shows parsed output of Linux nvidia-smi command.
It shows NVIDIA driver version, product name, total and used memory, temperature, running processes.

[image: ../_images/custom_resouces_nvidia_plot.png]
[image: ../_images/custom_resouces_nvidia_message.png]
Python classes stored in

cgru/afanasy/python/resources

and based from

cgru/afanasy/python/resources/resbase.py

Information is passed within class properties:

Properties

self.value(int)

The resource value to watch.

self.valuemax(int)

Maximum resource value for graph scale.

self.height(int)

Preferred plotter widget height for GUI.

self.width(int)

Preferred plotter widget width for GUI.

self.graphr(int)

self.graphrg(int)

self.graphb(int)

Graph color.

self.label(str)

Label text.

self.labelsize(int)

Label text font size.

self.labelr(int)

self.labelg(int)

self.labelb(int)

Label text font color.

self.bgcolorr(int)

self.bgcolorg(int)

self.bgcolorb(int)

Plotter background color.

self.tooltip(str)

Widget tooltip.

self.valid(False|True)

Resource meter validness.
Should be set to True in constructor, or update function will not be called.
Set False if resource meter initialization failed.

Windows Must Die

Farm based on MS Windows OS can produce some ‘bad’ windows.
If process crashed, Windows OS can launch a window with apologizes, and ‘hung’ the process until someone closes this window.

Afanasy Render client periodically finds and closes windows listed in af_render_windowsmustdie configuration parameter.

It closes them by sending WM_CLOSE signal.

af_render_windowsmustdie parameter example:

{
 "af_render_windowsmustdie":[
 "ImageMagick Studio library and utility programs",
 "Microsoft Visual C++ Runtime Library",
 "QuickTimeHelper-32.exe - Application Error",
 "Visual Studio Just-In-Time Debugger"
]
}

Pools

Pool consists of renders and other child pools.
It designed to manipulate properties (abilities) of group of render clients.

	Add/Remove/Enable/Disable services that pool renders are able to run.

	Set tickets to control how much pool renders can run together and each at the same time.

	Configure renders automatic Nimby and Free.

	Specify renders capacity and max_tasks.

	Make new renders to register in Nimby or Paused state to have some time for software installation.

[image: ../_images/afwatch_farm_services_tickets.png]

AfWatch pools services and tickets

Creation

You can add child pool to any parent pool using GUI.
Root pool will be automatically created.

Attributes

name

Pool name represents its path.

parent

Pool parent name (path).

time_creation

Time, when pool was created.

pools_num

Number of direct child pools.

pools_total

Total number of child and pools with grand childs.

renders_num

Number of renders in this pool.

renders_total

Total number of renders in this pool and renders in all child pools.

run_tasks

Number of total running tasks of all renders in the pool.

run_capacity

Total capacity of all running tasks in the pool.

task_start_finish_time

Time when first task was started or last task was finished.

Editable Parameters

annotation

Just some informative string that will be shown in GUI.

capacity_host

Pool hosts capacity.

exit_no_task_time

Render will exit having no task for this time.
By default it is -1, feature is disabled.
When this parameter is changed on pool, all its renders will receive it.

heartbeat_sec

Renders heart beat period in seconds.
Each heart beat render receives events from server,
launches new tasks and processes running tasks output,
sends an update message to server and receives a new events as an answer.
When this parameter is changed on pool, all its renders will receive it.

max_tasks_host

Pool hosts maximum running tasks.

new_nimby

New render will be registered in NIMBY state.
Useful when new host was created, Afanasy installed, but render software is not.
Afanasy can be used to install render software.
Maintenance job can ignore NIMBY and PAUSED render state.
NIMBY state can turned off automatically.

new_paused

New render will be registered in PAUSED state for maintenance purposes.

no_task_event_time

If render has no task for this time (seconds), server will emit this event RENDER_NO_TASK.
Next time event will be repeated after twice longer duration.
By default it is -1, feature is disabled.

overload_event_time

Event RENDER_OVERLOAD will be emitted if it has no free memory, disk or swap.
Next time event will be repeated after twice longer duration (seconds).
By default it is -1, feature is disabled.

power_host

Pool hosts power.
This is just any custom integer.
Job can filter renders for some minimum power.

properties_host

Pool hosts properties.
This is just any custom string.
Job can filter renders for matches this string.

resources_update_period

Render updates resources periodically, this is number of heart beats to do it.
AfWatch farm monitor will ask for renders resources according to this parameter.
When this parameter is changed on pool, all its renders will receive it.

sick_errors_count

Number of errors from different users render considered as SICK.
On any error render remembers task job user and counts them.
On any success task finish this count will be reset.
RENDER_SICK event can be used to notify admin that some machine can’t render.

services

Services names list that pool renders can run.

services_disabled

Disabled services names list that pool renders can not run.
If some parent pool allows to run some service, you can disallow to run in child pool.
Also it is useful for temporary service disabling,
to not to delete service and remember that it is just disabled for some time.

tickets_pool

Total tickets the pool has.
For example, to limit licenses,you can set NUKE:20 tickets to the root pool.
And nuke tasks should have NUKE:1 ticket.

tickets_host

Each render in the pool have such tickets.
For example, to limit RAM, you can set MEM:64 tickets to some pool with renders which have 64GB RAM.
And each render in the pool can run only one task with MEM:64 tickets,
or 2 tasks with MEM:32 tickets, or 1 with MEM:32 and 3 with MEM:10 at the same time.

zombie_time

If server will not receive an update message from render for this time,
render is considered as zombie (connection is lost) and goes to offline state.

idle_wolsleep_time

Time in seconds to put an idle machine to sleep.
If this value is set to zero, machines will never put to sleep automatically.

idle_free_time

Time in seconds set an idle machine with Nimby to free.
Zero or negative value disables the feature.

busy_nimby_time

Time in seconds set a machine with busy CPU and no Afanasy task to Nimby.
Zero or negative value disables the feature.

idle_cpu

CPU usage percentage machine considered as idle.

busy_cpu

CPU usage percentage machine considered as busy.

idle_mem

Memory used percentage machine considered as idle.

busy_mem

Memory used percentage machine considered as busy.

idle_swp

Swap used percentage machine considered as idle.

busy_swp

Swap used percentage machine considered as busy.

idle_hddgb

Free disk space in Gigabytes machine considered as idle.

busy_hddgb

Free disk space in Gigabytes machine considered as busy.

idle_hddio

Disk I/O usage percentage machine considered as idle.

busy_hddio

Disk I/O usage percentage machine considered as busy.

idle_netmbs

Network send plus receive speed in Megabytes per second machine considered as idle.

busy_netmbs

Network send plus receive speed in Megabytes per second machine considered as busy.

State

	Busy

	At least one pool render runs some task

	Paused

	Pool renders does not accept any tasks

Tickets

Ticket is some named counter.

Pool can have host and pool tickets.
Host means that each pool host has such tickets.
Pool means that an entire pool has this tickets.

If job block has tickets it can run only on pools and renders that has such tickets enough.
Each block task will be produced with block tickets.
When render starting task with tickets, it counts tickets usage.
Pool counts total tickets usage.

[image: ../_images/afwatch_tickets_jobs.png]

AfWatch job block tickets

For example if you want to limit licenses on the entire farm,
you can set NUKE:20 pool tickets on the root pool.
If you want to limit RAM usage on each pool host,
You can set MEM:64 host tickets on a pool which renders has 64GB RAM.
And each pool render will be able to run one task with MEM:64 tickets,
or 2 tasks with MEM:32, or 1 MEM:32 and 3 MEM:10 tasks at the same time.
Just one side effect will appear in this case,
pools will count total MEM tickets and renders will count NUKE tickets too.

Ticket can be displayed as some custom image,
if a png file with the same name exists in the directory:

cgru/icons/tickets

If a ticket icon file exists, GUI will replace ticket name with its icon.
Unlike serivce, where icon is painted along with name.
Also ticket icon will not be resized to a square image, so ticket can be painted as a rectangle.
This is done to make tickets and services more differ in a GUI, to not to mess them.
And they will be differ more, if tickets names will be uppercase, unlike services, that are all lowercase.

Also pool tickets has a maximum hosts limit.
This is mostly needed for licence hosts limits.
There is a common type of licensing where you can run multiple instances of software on same host, occupying only single license.

Watch

Watch is a Qt GUI for Afanasy.

Jobs

[image: ../_images/afwatch_jobs.png]
This is a list of user jobs.

Work

[image: ../_images/afwatch_work.png]
This is a hierarchy of branches and jobs from all users.
Only VISOR can make changes here.
For a common user this list is read only.

Farm

[image: ../_images/afwatch_farm.png]
This is a hierarchy of pools and renders.
Only admin can make changes here.
For a common user this list is read only.

Users

[image: ../_images/afwatch_users.png]
This is a list of all Afanasy users.
User can manipulate only own node.
Admin can manipulate any user node.

Modes

It has several user modes for farm administration purposes:

	USER user mode:

User can change his parameters and operate his jobs only.

	VISOR super user mode:

Can change parameter of any user and operate jobs of any user.

	GOD admin mode:

Can do anything, operate any user, any job and farm (renders and pools).

To switch user mode you need to type password in active Watch window
(you do not need to re-login to switch between modes).
To reset super user mode you can type password again.

You can configure passwords in a CGRU config JSON files
(see Configuration page).
Passwords are defined by configuration variables:

pswd_visor

Visor passwords md5 sum.
Password must be 5 characters length.

Default value is 1832116180fdc61b64fd978401e462e9

It is idkfa

pswd_god

God password md5 sum
Password must be 5 characters length.

Default value is 73bcaaa458bff0d27989ed331b68b64d

It is iddqd

[image: ../_images/doom2.jpg]

UI Levels

At first Watch was designed as a minimalistic GUI, like hand watches.
With a lots of abbreviated words, to fit lots of information on a small screen.
But later it begin to grow and got several UI levels to display brief or full info.

	
	Padawan

	You will see parameters with a full names.
Useful when you just started to use Afanasy.

	
	Jedi

	You will see parameters with a brief names.
Useful when you know most parameters.

	
	Sith

	You will see parameters with a abbreviated names.
It is like on hand watches, where you see “TU 4”, instead of “Today it is Tuesday, 4th August 2020 Year”,
as you are definitely know that it is August 2020,
“TU” is Tuesday, and next “4” number means the day of month.

Main window menu will disappear for space economy.
It will be available on RMB menu at window top.

Styles

Watch GUI has a several Color Themes:

Light

[image: ../_images/afwatch_style_light.png]

Dark

[image: ../_images/afwatch_style_dark.png]

Military

[image: ../_images/afwatch_style_military.png]
First versions has no Color Themes and UI Levels.
AfWatch GUI always had Military theme and Jedi level.

Hello Kitty

[image: ../_images/afwatch_style_hello_kitty.png]

Hello Kitty Hell

[image: ../_images/afwatch_style_hello_kitty_hell.png]

Web GUI

There is a Web GUI for Afanasy.

Afanasy server supports some web server functions to be able to run this GUI.
No other software or plugins needed.

Too see Afanasy page, type server_name:51000 in a browser address bar,
where 5100 is the default Afanasy server port.

[image: ../_images/webgui_farm.png]
Web GUI is useful for administrators to manage farm
from some special machines (devices) where CGRU can’t be installed.

If you setup some VPN, you can monitor jobs from smartphone.

Important

Try not to use Web GUI as a common Afanasy GUI instead of Watch.
Web GUI consumes much more resources and on client and on server side.
Also it needs much more traffic.
On a large number of GUI items browser can take lots of RAM.
If browser tries to show more that 10000 items it can hung.

Online Version

Online version is designed to let users to try Afanasy via WEB GUI.
You can change parameters, restart jobs.
You even can to delete everything and it will be empty till the next demo start.

http://afanasy.cgru.info:51000

	This is not a real working server at CG company.

	All render clients and server are running on the same host.

	Server does not accept new jobs.

	Server does not allow to change existing tasks commands.

	All services (tasks) starts a simple python script that just sleeps for some time.

HTTP Server Configuration

There is some Afanasy server settings stands for HTTP serving.
This settings can help you to setup some custom web GUI.

	
	af_http_serve_dir

	Afanasy server HTTP serve folder.
If not set or empty CGRU root folder will be used.

	
	af_http_site_index

	Afanasy server HTTP response on an empty GET request.
Default: /afanasy/browser/index.html

	
	af_http_directory_index

	Afanasy server HTTP response on a directory GET request.
Default: index.html

You can even make server to serve several GUIs and let artists to choose one.

Job

Afanasy Job can have one or more blocks.
Blocks have tasks.
Blocks are needed to store some same parameters for all tasks it consists of.
For example all block tasks have the same working directory, capacity, service and parser type.
But commands are differ.

Jobs are created by Python API by some submission script:

import af

job = af.Job(job_name)

Attributes

name

af.Job(str)

af.Job.setName(str)

Each job has an unique name.
If new a job comes to server with the name which already exists, server change it’s name by adding a number.
Jobs dependences bases on their names and depend mask to match it.
Afanasy uses standard Regular Expressions.
The same expressions are in Python, Perl, JavaScript, PHP and other languages.

user_name

af.Job.setUserName(str)

User name who has created the Job.
Python API constructs a job with the current user name.

host_name

Host name where job was created.

time_creation

Time when the job was created.

time_started

Time when the job was started (produced the first task).

time_done

Time when the job was done (last task finished).

description

af.Job.setDescription(str)

Any custom description. For statistics database QSL queries only.

blocks[]

af.Job.blocks[] (array)

Job consists of block(s).

Editable Parameters

priority

af.Job.setPriority(int)

Job with a greater priority will run first.

max_running_tasks

af.Job.setMaxRunningTasks(int)

Maximum number of running tasks at the same time.

max_running_tasks_per_host

af.Job.setMaxRunTasksPerHost(int)

Maximum number of running tasks at the same time at the same host.

hosts_mask

af.Job.setHostsMask(str)

Job run only on renders which host name matches this mask.

hosts_mask_exclude

af.Job.setHostsMaskExclude(str)

Job can not run on renders which host name matches this mask.

pools

af.Job.setPools(dict)

Pools is a string and number pairs (map<sting,int>).
Each pair represents pool name string and pool priority number.

depend_mask

af.Job.setDependMask(str)

Job will wait other user jobs which name matches this mask.

depend_mask_global

af.Job.setDependMaskGlobal(str)

Job will wait other jobs from any user which name matches this mask.

time_wait

af.Job.setWaitTime(seconds)

Time to wait to start a job.

ppa

af.Job.setPPApproval()

Preview Pending Approval parameter plays role only when job block(s) has a non-sequential tasks solving.
When PPA is turned on, job renders only non-sequential tasks (for example just each 10 frame).
Then job state falls into PPA and it stops to solve any tasks.
Artist can check each 10 job frames.
And, depending on the results, continue job or not.
To continue job, you can turn PPA parameter off.

maintenance

af.Job.setMaintenance()

Job will run on tasks which name matches render name.
Useful for “Maintenance” jobs, when you want some command run only once on each render.
For example you can install software this way.

ignorenimby

af.Job.setIgnoreNimby()

Job tasks will run on render even it has “Nimby” state.
Useful for “Maintenance” jobs.

ignorepaused

af.Job.setIgnorePaused()

Job tasks will run on render even it has “Paused” state.
Useful for “Maintenance” jobs.

need_os

af.Job.setNeedOS(str)

af.Job.setNativeOS()

Job will run only on hosts which name contains this mask.
Python setNativeOS() function will automatically set needed OS the same that it run.

need_properties

af.Job.setNeedProperties(str)

Job will run only on hosts with custom properties contains this mask. It’s custom host parameter can be defined in farm description.

command_pre

af.Job.setCmdPre(str)

Command to execute on job registration.
Note, that this command is executed by server, and not from tasks working directory.
Use absolute paths here or even transfer paths if you server has another file system than renders.
If somebody executes ‘sleep 1000’, other commands execution (and jobs registration) will be delayed on 1000 seconds (only delayed, not lost).
Try not use Pre Command at all.
You always can create one more task(block) and make other tasks(blocks) depend on it.

command_post

af.Job.setCmdPost(str)
Command executed on job deletion.
Usually used to delete temporary render scene.
This commands are executed on render farm hosts by special system job.
Working directory of such system task will be the first block working folder.

time_life

af.Job.setTimeLife(seconds)

Maximum job age in seconds.
When job age becomes greater then life time if will be automatically deleted in any case.
It is useful for some technical jobs to prevent their amount rise.
User can set default Life Time value for all its jobs.

annotation

af.Job.setAnnotation(str)

Job annotation.
Does not influence anything.
This string will be shown in a GUI item.

report

Job annotation.
Does not influence anything.
This string will be shown in a GUI item.
It should be set from a task parser: self.report

State

	Ready

	RDY

	Job is ready to produce a task.

	Running

	RUN

	Job has running tasks.

	Done

	DON

	All job tasks are done (may be some skipped).

	Error

	ERR

	Job has some error tasks.

	Skipped

	SKP

	Some job tasks are skipped.

	Waiting Dependencies

	WD

	Job waits some other jobs to be done.

	Waiting Time

	WT

	Job waits some time to start.

	Preview Pending Approval

	PPA

	Job has rendered all non-sequential tasks and waits approval.

	Offline

	OFF

	Flag to server not to solve a job.

Job Block

Afanasy Job Block keeps the same parameters for all its tasks.
When task is generated (when it ready to run) it take such parameters as working folder, capacity, service from block.

Blocks can be numeric (most blocks in Afanasy are numeric).
Numeric blocks does not have tasks at all.
Such block keeps parameters for all its tasks itself.
For example it has a command as

render -s @#@ -e @#@"

where @#@ will be replaced with start and end frames for each task.

import af

job = af.Job(job_name)

block = af.Block(name, service)

job.blocks.append(block)

Attributes

name

af.Block(name, service)

af.Block.setName()

Each Block has an unique name.
If new Block added to Job which the name already exists, Job change it’s name by adding a number.
Blocks dependence bases on their names and depend masks to match it.

tasks_num

The number of tasks in block.

frame_first

af.Block.setNumeric(start, end, pertask, inc)

First block frame.

frame_last

af.Block.setNumeric(start, end, pertask, inc)

Last block frame.

frames_inc

af.Block.setNumeric(start, end, pertask, inc)

In various software also known as frames step, jump, by frame.
You can use it if you want to render only each third frame, for example.

frames_per_task

af.Block.setNumeric(start, end, pertask, inc)

af.Block.setFramesPerTask(int)

Number of frames in each task.
When block is not numeric (has tasks with individual commands) used to compute blocks per task dependency.
Negative values means sub-frame dependency.
For example you can render tiles or generate shadows in one block and generate mantra ‘ifd’ files in another with 1 frame per task.
And if task has 4 shadows or 2x2 tiles you can set -4 frames per task for depended block.

Editable Parameters

tasks_name

af.Block.setTasksName(str)

Block tasks names pattern.

	Block - numeric, pattern - not empty: generated task will fill this pattern with its first and last frames numbers.

	Block - numeric, pattern - empty: tasks will take first_frame - last_frame name.

	Block - not numeric, pattern - not empty: task fill this pattern with it name.

	Block - not numeric, pattern - empty: task simply take its name.

sequential

af.Block.setSequential(int)

By default, sequential is 1, tasks will be solved from the first to the last one by one.
If this parameter is -1, tasks will be solved from the last to the first one by one.
If this parameter is greater than 1 or less than -1, 10 for example, tasks with every 10 frame will be solved at first, than other tasks.
If -10, every 10 frame but from the end.
Important thing that task frame is used for sequential calculation, not task number.
If sequential is 0, always middle task will be solved.
For example if frame range is 1-100, tasks solving order will be: 1,100,50,25,75 and so on.

service

af.Block.setService(str)

The name of a block tasks service type.

parser

af.Block.setParser(str)

Block tasks output parser name.

working_directory

af.Block.setWorkingDirectory(str)

Tasks process working directory.

environment

af.Block.setEnv(name, value)

Tasks process extra environment.

command_post

af.Block.setCmdPost(str)

Like job “command_post” but for each block.
Working directory of this command will be this block working folder.

capacity

af.Block.setCapacity(int)

Task checks available capacity on render to run on it.
Capacity can be static (by default) and variable - base value and coefficients:

capacity_coeff_min

capacity_coeff_max

af.Block.setVariableCapacity(min, max)

Block can generate tasks with capacity*coefficient to fit free render capacity.
Task commands will be searched for the special string to replace it with capacity coefficient number.
This command replacement performs render by service python class instance.
Any service can describe own rule for this replacement by implementation of base class method.
By default, base service class performs command.replace(‘@AF_CAPACITY@’, str(capacity)).
You can specify number of CPUs to use for your applications (if it supports it by command line arguments).

multihost_min

multihost_max

multihost_max_wait

multihost_master_on_slave

multihost_service

multihost_service_wait

af.Block.setMultiHost(min, max, wait, master_on_slave=False, service=None, service_wait=-1)

A singe block task can run on several hosts.
You can specify minimum and maximum number of hosts that task can take.
Time in seconds to wait for maximum hosts.
Whether the master host will be in slaves list.
For example if task took ‘r00’, ‘r01’, ‘r02’, ‘r03’, ‘r04’ hosts master command will be executed on ‘r00’ and ‘r00’ will be in slaves list too.
If tasks has multihost service you can’t enable this parameter, because only one command can be executed master or slave.
Command to execute on slaves hosts, if it is empty, no service will be executed.
Time in seconds to wait for master execution after slaves execution.

max_running_tasks

af.Block.setMaxRunningTasks(int)

Maximum number of tasks block can run on the same time.

max_running_tasks_per_host

af.Block.setMaxRunTasksPerHost(int)

Maximum number of tasks block can run on the same time on the same host.

hosts_mask

af.Block.setHostsMask(str)

Block run only on Renders which host name matches this mask.

hosts_mask_exclude

af.Block.setHostsMaskExclude(str)

Block can not run on renders which host name matches this mask.

depend_mask

af.Block.setDependMask(str)

Block will wait other job blocks which name matches this mask.

tasks_depend_mask

af.Block.setTasksDependMask(str)

Block task will wait other job blocks task which name matches this mask.

errors_retries

af.Block.setErrorsRetries(int)

Number of task errors to retry it automatically. Value ‘-1’ means take this value from user settings.

errors_avoid_host

af.Block.setErrorsAvoidHost(int)

Maximum number of errors on same host.
Block begins to avoid render host name if number of errors on it greater or equal this value.
Zero value means no limit.
Value ‘-1’ means take this value from user settings.

errors_task_same_host

af.Block.setErrorsTaskSameHost(int)

Maximum number of errors for task on same host.
Task begin to avoid this host name of errors on it greater or equal this value.
Zero value means no limit.
Value ‘-1’ means take this value from user settings.

errors_forgive_time

af.Block.setErrorsForgiveTime(int)

Time form last error to forgive error host (reset it’s errors count).
Zero value means no forgive.
Value ‘-1’ means take this value from user settings.

task_max_run_time

af.Block.setTaskMaxRunTime(seconds)

Task maximum time to run.
After this time task will be set to error (and may be automatically restarted according to Error Retries value).
If this value equals or less than zero, no task run time limit exists.

task_min_run_time

af.Block.setTaskMinRunTime(seconds)

Task minimum time to run.
If task will finished with success for a time less this value, it will be treated as an error.
If this value equals or less than zero, this limit will be disabled.

task_progress_change_timeout

af.Block.setTaskProgressChangeTimeout(seconds)

If running task progress (percentage) will be the same for this time, task will be stopped with error.
If this value equals or less that zero, no such limit exists.

The default value can be set by af_task_progress_change_timeout config variable.
It is a server side variable, you can ask server to reload config without restarting by afcmd cload command.
See Configuration and afcmd sections.

need_power

af.Block.setNeedPower(int)

Minimum render host power needed.
It’s custom host parameter can be set by pool.

need_memory

af.Block.setNeedMemory(int)

Minimum render host free memory needed in megabytes.

need_gpu_mem_mb

af.Block.setNeedGPUMemGB(float)

Minimum render host GPU free memory needed in gigabytes.
The function will convert it to integer megabytes.

need_cpu_freq_mgz

af.Block.setNeedCPUFreqGHz(float)

Minimum render host CPU frequency in gigahertz.
The function will convert it to integer megahertz.

need_cpu_cores

af.Block.setNeedCPUCores(int)

Minimum render host CPU cores number.

need_cpu_freq_cores

af.Block.setNeedCPUFreqCores(float)

Minimum render host CPU frequency * cores in gigahertz.
The function will convert it to integer megahertz.

need_hdd

af.Block.setNeedHDD(int)

Minimum render host free disk space needed in gigabytes.

need_properties

af.Block.setNeedProperties(str)

A mask to much render host properties to run on it.
It’s a custom host parameter can be set by pool.

command

af.Block.setCommand(str)

Tasks command pattern.
When block produces a task it calculates an unique command from this pattern and other parameters,
depend on block type - numeric or string, replacing @#@ pattern with a number.
Padding is specified by the number of “#” symbols between “@” symbols.

String: block seek for “@#@” string in command and replace it by another string get from Task Command.

Example:

command: myrender some.scene -camera @#@

arguments = ['sun','sky','front','side','bottom']

Result:

1st task command: myrender some.scene -camera sun

2nd task command: myrender some.scene -camera sky

3rd task command: myrender some.scene -camera front

If block command is empty Task Command is simply used.

Numeric block calculates first and last frame for the task
according to task number, Frame First, Frame Last, Frame per Host and Frame Increment values.
Each of @#@ pairs will be replaced with the start and end numbers.

Examples:

command: myrender some.scene -s @#@ -e @#@

frame_first: 1, frame_last: 10, frames_per_task: 4

Result:

1st task command: myrender some.scene -s 1 -e 4

2nd task command: myrender some.scene -s 5 -e 8

3rd task command: myrender some.scene -s 9 -e 10

command: myrender something.@####@.obj

frame_first: 1, frame_last: 10, frames_per_task: 1

Result:

1st task command: myrender something.0001.obj

2nd task command: myrender something.0002.obj

last task command: myrender something.0010.obj

You can check numbers filling by command:

afcmd numcmd service frame_start frame_end command

files[]

af.Block.setFiles(str[])

Each task can have result file(s) pattern.
Result file name will be constructed from this pattern by the same method as described before.
Some another application, for example watch GUI, can execute your favorite image viewer program [file] and preview result frame.

Python function will extend an existing files array.

Example (numeric):

Block files: images/back.@####@.exr

Preview command: nuke -v @ARG@

Result for 57 frame: nuke -v images/back.0057.exr

Example (not numeric):

Block files: images/back.@#@.exr

Task files: 0057

Preview command: nuke -v @ARG@

Result: nuke -v images/back.0057.exr

Task can have several files for preview, for example when several render passes or a stereo images pair.

If block is not numeric and block view command is empty only task view command is used.

Watch will execute command in a task block working directory.

Flags

numeric

1 << 0

Numeric

varcapacity

1 << 1

af.Block.setVariableCapacity(min, max)

multihost

1 << 2

af.Block.setMultiHost(min, max, wait, master_on_slave=False, service=None, service_wait=-1)

masteronslave

1 << 3

af.Block.setMultiHost(min, max, wait, master_on_slave=False, service=None, service_wait=-1)

dependsubtask

1 << 4

af.Block.setDependSubTask()

For tasks with several frames calculate sub task dependence.
Useful for simulation and render when not all frames simulated.

skipthumbnails

1 << 5

af.Block.skipThumbnails()

Do not try to generate any thumbnails.

skipexistingfiles

1 << 6

af.Block.skipExistingFiles(size_min = -1, size_max = -1)

AfRneder can check files on client just before task start (in a Python service class initialization). It can skip task command launch if file(s) are exist. If size_min or(and) size_max are positive, it will check size too. Block(task) files parameter should be set properly.

checkrenderedfiles

1 << 7

af.Block.checkRenderedFiles(size_min = -1, size_max = -1)

AfRneder can check files on client just after task finish (in a Python service class).
It can set task as error if file(s) are not exist.
If size_min or(and) size_max are positive, it will check size too.
Block(task) files parameter should be set properly.

slavelostignore

1 << 8

af.Block.setSlaveLostIgnore()

On a slave host missing, multi-host task will not restart. It will just ignore this.

State

	Ready

	RDY

	Block is ready to produce a task.

	Running

	RUN

	Block has running tasks.

	Done

	DON

	All block tasks are done (or some skipped).

	Error

	ERR

	Block has some error tasks.

	Skipped

	SKP

	Some block tasks are skipped.

	Waiting Dependencies

	WD

	Block waits some other blocks.

Job Task

Tasks are exists only in non-numeric blocks, where each task can have its own name and command.
In numeric blocks tasks are generated on demand, as numeric block enough has information to generate any task.
Most blocks are numeric, as tasks are differ only by few numbers in a command.

There are some cases when tasks commands differ by some strings, and block can’t be described by frame numbers.
For example ffmpeg converts various sequences and movies in a single job block (Rules constructs such jobs for previews).

import af

job = af.Job(job_name)

block = af.Block(name, service)

job.blocks.append(block)

task = af.Task(task_name)

block.tasks.append(task)

Attributes

If block is numeric all this attributes are generated on the fly by block.

name

af.Task(str)

Task name. Generated, if block is numeric.

command

af.Task.setCommand(str)

Command to execute. Generated, if block is numeric.

files[]

af.Task.setFiles(str[])

Files for preview. Generated, if block is numeric.

environment

af.Task.setEnv(name, value)

Tasks process extra environment.
It will be merged with a block extra environment.

tst

Time when task was started (last start).

tdn

Time when task was done (last finish).

str

Number of times task has started (it can be manually or automatically restarted).

per

Running task progress percentage.

frm

Running frame for multiframe tasks which can be produced by numeric blocks when frames per render parameter > 1.

pfr

Running percentage of current running frame for multiframe tasks which can be produced by numeric blocks when frames per render parameter > 1.

err

Number of times the task produced an error.

hst

Host name where the task was started last time.

act

Last task activity.
This is a sting to informate user only, does not influence anything.
Activity can be parsed from task process output by Python parser class.

State

	Read

	RDY

	Task can be executed.

	Running

	RUN

	Task is running.

	Done

	DON

	Task is done.

	Error

	ERR

	Task finished with error or failed to start.

	Skipped

	SKP

	Task skipped.

	Waiting Dependencies

	WD

	Warning dependent tasks to be done.

	Warning

	WRN

	Warning from parser.

	Parser Error

	PER

	Error from parser.

	Parser Bad Result

	PBR

	Bad result from parser.

	Restated Error Ready

	RER

	Automatically restarted ERR task.

Branch

A branch is like a folder in a file-system.
A branch can contain child branches (folders) and jobs (files),
so there is a hierarchy of branches (folders) and jobs (files).
Branches are designed to combine and manipulate a set of similar (department, project, scene, asset) jobs.

Creation

The first ROOT branch will be created by the system job.

Any job has a sting attribute branch.
When a job comes to the server, it looks whether the job branch exists.
If the branch exists, this branch becomes the new job parent.
If the branch does not exist, server tries to find the parent branch of the new job branch.
Then it tries to find the parent of the parent in a cycle (recursion).
When it find a matching parent branch (it must do it, as a root branch always exists),
it tries to create a child branch if the Auto Create Child ACC flag is set.
If the flag is not set, the job will be parented to the most base branch in the branches hierarchy.
And the job branch will be updated to the actual parent that the server could find/create.

Example

For example, you have projects mounted in /prj folder.
So, you have such folders structure:

	/

	prj/

	bus/

	car/

	plane/

	train/

Where bus, car, plane and train are project names.

Lets imagine that you have some scene file to render:

/prj/train/shots/scene_a/work/scene.sc

When you render that scene for the first time, the /prj branch will be created.
As the root branch has Auto Create Child (ACC) flag set by default.
No more deeper branch(es) will created on this stage.
As the auto-created branch does not have ACC flag set.
At this stage job solving will be the same as there are no branches in Afanasy at all.
But if you set ACC flag on a new /prj branch, each project will create it’s own branch.
So you can manipulate jobs that belongs to some project.
For example give some project more priority.

Attributes

name

Branch name, that represents branch full path.
Root branch name is always /.

parent_path

Parent branch path (name).
It is an empty string for the root branch.

time_creation

Time when branch was created.

branches_num

Number of child branches (direct childs, not childs of childs).

branches_total

Total number of child branches and all their sub-childs.

jobs_num

Number of child jobs (direct childs, not childs of childs).

jobs_total

Total number of child jobs and all sub-child branches jobs.

running_tasks_num

Number of tasks that branch jobs running.

running_capacity_total

Total capacity of all (total) running tasks.

Editable Parameters

priority

Branch solving priority.

max_tasks_per_second

Maximum tasks limit that branch can produce per second.

max_running_tasks

Maximum tasks limit that branch can run at the same time.

max_running_tasks_per_host

Maximum tasks limit that branch can run at the same time on the same host.

hosts_mask

Branch can be solved only on machines that name matches this mask (regular expression).

hosts_mask_exclude

Branch can not be solved on machines that name matches this mask (regular expression).

Flags

create_childs

Branch will create a child branch automatically, when a new job asks for it.

solve_jobs

By default, branch solves its jobs users by priority.
But if this flag is set, branch will solve its jobs directly.

solve_method

Solve child nodes by priority or order.

solve_need

Solve child nodes by running capacity total or tasks number.

User

User is created on a new job from user that does not exist.

Or you can create user manually using CLI:

afcmd uadd username

Attributes

name

Each user should have an unique name.
If some artists has the same login name, you can use AF_USERNAME environment variable to override it.

host_name

Host name where the last job was send from.

jobs_num

The number of jobs the user has.

running_jobs_num

The number of currently running jobs.

running_tasks_num

The number of currently running tasks.

time_register

Time when the user was registered.

time_activity

The last user activity time.

Editable Parameters

priority

User with greater priority can have more running tasks number (get more render hosts).

need = pow(1.1, priority) / (running_tasks_num + 1.0)

Each priority point gives 10% hosts bonus (running tasks number).

max_running_tasks

Maximum number of running tasks user can have.

hosts_mask

User can run only on renders which host name matches this mask.

hosts_mask_exclude

User can not run on renders which host name matches this mask.

errors_retries

Default Error Retries value for user jobs.

errors_avoid_host

Default Errors Avoid Host value for user jobs.

errors_task_same_host

Default Errors Task Same Host value for user jobs.

errors_forgive_time

Default Errors Forgive Time value for user jobs.

jobs_life_time

Default Life Time value for user jobs.

annotation

Annotate user GUI item.

API

Afanasy can communicate via JSON protocol.
And only JSON protocol.
Any GUI, CLI or Python script (API) constructs JSON objects to send to server.

Python API

You can create jobs within Python, that exists in most common CG software.
Afanasy Python module helps you to construct a valid JSON job object for server.
Also it sends json data to server.

Example

Import afanasy python module (must be in PYTHONPATH)
import af

Create a job
job = af.Job('somejob')

Set job depend mask
job.setDependMask('another_job_name')

Set maximum tasks that can be executed simultaneously
job.setMaxRunningTasks(15)

Set job hosts mask
job.setHostsMask('render.*')

Start job paused
job.offLine()

Create a block with provided name and service type
block = af.Block('back', 'nuke')

Set block tasks command
block.setCommand('nuke -i -X WriteBack -x scene.nk.tmp.nk @#@,@#@')

Set block tasks preview command arguments
block.setFiles(['jpg/img.@####@.jpg'])

Set block to numeric type, providing first, last frame and frames per host
block.setNumeric(1, 100, 10)

Add block to the job
job.blocks.append(block)

Set command to execute by server after a job is deleted.
job.setCmdPost('rm /projects/test/nuke/scene.nk.tmp.nk')

Send job to Afanasy server
job.send()

Job Class

	Constructor:

	job = af.Job(job_name = None)

Takes job name as a parameter (optional).

	Variables:

	job.blocks = []

Blocks list.

	Some Functions:

	job.offline()

Set job to Offline state.

	job.output(output_blocks = True)

Print job information. If True print job blocks information too.

	job.send()

Send job to Afanasy server.

Block Class

	Constructor:

	block = af.Block(block_name, service_name)

Construct a new block and return it.

	Variables:

	block.tasks = []

Tasks list. Used for not numeric blocks.

Task Object

	Constructor:

	task = af.Task(task_name)

Construct a new task and return it.

JSON Protocol

You can use afcmd CLI to send JSON objects (files) to Afanasy server:

	afcmd json [file|pipe]: Test JSON syntax, output an error and position.

	afcmd v json [file|pipe]: Same as previous and output parsed JSON document structure.

	afcmd json send [file]: Send JSON data after successfully parsed.

Job

Here is an example of a minimum JSON object to send to server to construct a job:

{
 "job":
 {
 "name" : "job name",
 "user_name" : "jimmy",
 "host_name" : "host",
 "blocks":[
 {
 "name" : "Nuke",
 "tasks_name" : "frames @#@-@#@",
 "service" : "nuke",
 "parser" : "nuke",
 "frame_first" : 1,
 "frame_last" : 100,
 "frames_per_task" : 10,
 "frames_inc" : 2,
 "command" : "nuke -F@#@,@#@ -x scene.nk -X Write1",
 "working_directory" : "/home/jimmy/work",
 "files" : ["folder/img_L.@####@.jpg","folder/img_R.@####@.jpg"]
 }
]
 }
}

Get

Get request are used to get information from server.

Here are some examples:

	Get a list with all jobs:

{
 "get":
 {
 "type" : "jobs"
 }
}

	Get jobs list from users with specified ids:

{
 "get":
 {
 "type" : "jobs",
 "uids" : [1,2]
 }
}

	Get renders by host names pattern:

{
 "get":
 {
 "type" : "renders",
 "mask" : "farmhost.*"
 }
}

	Get users list with special ids:

{
 "get":
 {
 "type" : "users",
 "ids" : [1,2]
 }
}

Actions

Actions are used to edit parameters and perform operations.

Any action should have host_name and user_name fields for logs.

Here are some examples:

	Set render nimby

{
 "action":
 {
 "user_name" : "jimmy",
 "host_name" : "pc01",
 "mask" : "pc02",
 "type" : "renders",
 "params" :
 {
 "nimby" : true
 }
 }
}

	Set user priority

{
 "action":
 {
 "user_name" : "jimmy",
 "host_name" : "pc01",
 "mask" : "bob",
 "type" : "users",
 "params" :
 {
 "priority" : 50
 }
 }
}

	Exit render

{
 "action":
 {
 "user_name" : "jimmy",
 "host_name" : "pc01",
 "mask" : "pc02",
 "type" : "renders",
 "operation" :
 {
 "type" : "exit"
 }
 }
}

	Delete job

{
 "action":
 {
 "user_name" : "jimmy",
 "host_name" : "pc01",
 "mask" : "my3drender",
 "type" : "jobs",
 "operation" :
 {
 "type" : "delete"
 }
 }
}

afcmd

afcmd is a command line interface (CLI) to Afanasy server and statistics SQL database.

afcmd [command] execute a command.

afcmd without any arguments to see output of afanasy environment initialization.

afcmd h display help - list all commands.

afcmd h [command] display help for specified command.

afcmd v [other arguments] put program in verbose mode.

afcmd cload

Ask Afanasy server to reread config files.
It can be reconfigured without restart.

afcmd db_check

Check database connection.

afcmd db_reset_all

Drop tables in Afanasy database if any, and create new.
This command should be executed before first Afanasy server start to create needed tables for statistics (if you need any).

Software Integration

	3D Studio Max
	Submission Dialog

	Adobe After Effects
	Installation

	Tool Dialog

	Watch Job

	Shared Script Location

	Blender
	Setup

	Properties

	Job GUI

	Cinema 4D
	Afanasy Dialog

	Submission

	Scheduling

	Masks

	Clarisse iFX
	In-App Submission

	AfWatch

	WebGUI

	Setup

	AfStarter

	Developers

	Fusion
	Menu

	Dialog

	Job GUI

	Setup

	Houdini
	Afanasy ROP

	Distributed Simulations

	Afanasy TOP Scheduler

	Setup

	Maya
	meTools for Afanasy

	Stand-Alone Dialog

	The Simplest MEL Dialog

	CGRU Maya

	Natron
	Afanasy Node

	Complex Situation

	Render Selected

	Setup

	Nuke
	CGRU Menu

	Afanasy Gizmo

	Complex Job (Precomps)

	Render Selected

	Setup

	Softimage XSI
	Afanasy Window

3D Studio Max

CGRU creates a menu in main window menus panel.
Menu creation script file is cgru\plugins\max\startup.ms.
To setup MAX to launch this script automatically you can add this folder in PATH.
On every start MAX searches PATH for startup.ms scripts and launches them.

Submission Dialog

CGRU -> Afanasy…

[image: ../_images/max_submission.png]
[image: ../_images/max_afwatch_job.png]

	
	Job Name

	Job name.
Scene name by default.

	
	Start Frame

	First frame to render.

	
	End Frame

	Last frame to render.

	
	By Frame

	Render every Nth frame.

	
	Frames Per Task

	Number of frames in one task.

	
	Override Camera

	Select camera to render.

	
	Override Output Image

	Specify output image.

	
	Use Scene Folder As WDir

	Use scene file folder as render process working directory.
3D Studio Max, its plugins sometimes change working directory.
With this option it will be always the scene folder.

	
	Specify Working Directory

	Set custom working directory.

	
	Render Batch View

	Select batch view to render.

	
	Priority

	Job order in user job list, ‘-1’ - use default priority.

	
	Max Hosts

	Maximum number of hosts job can capture (running tasks limit), ‘-1’
no limit.

	
	Capacity

	Job tasks capacity, ‘-1’ - use default value.

	
	Depend Mask

	Wait same user jobs names pattern.

	
	Global Depend

	Wait any user jobs names pattern.

	
	Hosts Mask

	Job can run only on hosts which names match this pattern.

	
	Exclude Hosts

	Job can not run on hosts which names match this pattern.

	
	Save Temporary Scene

	Copy scene to temporary file to render.
It allows user to continue working with original file.

	
	Start Job Paused

	Send job in offline state.

Adobe After Effects

Installation

	Put a script from CGRU plugins folder

C:\cgru\plugins\afterfx\Afanasy.py

to AfterFX scripts folder

C:\Program Files\Adobe\Adobe After Effects CS6\Support Files\Scripts

	Allow script to connect network

Preferences - General - Allow scripts to Write Files and Access Network

[image: ../_images/afterfx_scripts_menu.png]

Tool Dialog

General Tab

Here are general job parameters.

[image: ../_images/afterfx_dialog_general.png]

Movie Tab

Here you can ask Afanasy to create a small preview movie.

[image: ../_images/afterfx_dialog_movie.png]

Watch Job

This is how a job will be displayed in the Watch GUI.

[image: ../_images/afterfx_afwatch_job.png]

Shared Script Location

You can put a CGRU plugin script to some shared (network) location.
In this case you should create a script:

C:\Program Files\Adobe\Adobe After Effects CS6\Support Files\Scripts\Afanasy.jsx

var scriptFile = new File("\\\\server\\share\\cgru\\plugins\\afterfx\\Afanasy.jsx");
scriptFile.open();
eval(scriptFile.read());
scriptFile.close();

Blender

Setup

If you run Blender from CGRU Keeper, it addon will be added automatically.

You can setup CGRU addon manually. It is located in:

/opt/cgru/plugins/blender

Or in some custom location you have unpacked CGRU in.

[image: ../_images/blender_preferences.png]

Blender Preferences Window

If you run blender not from CGRU and installed addon manually,
you should setup CGRU location for the addon.
It needed as the addon uses other python scripts from CGRU.

Properties

[image: ../_images/blender_afanasy_properties.png]

Blender Afanasy Properties

	
	Job Name

	Afanasy job name. If empty scene name will be used.

	
	File Path

	If not empty, override output images to render.

	
	Start Job Paused

	Start job paused (send in off-line state).

	
	Split Render Layers

	Render different layers in a separate job blocks. Warning: this option disable post-processing passes (compositing nor seqeuncer are execute)

	
	Pack Linked Objects

	Make local all linked groups and objects.

	
	Pack Textures

	Pack all textures into the blend file.

	
	Start

	First frame to render.

	
	End

	Last frame to render.

	
	By

	Frames “jump” or increment.

	
	Per Task

	Number of frames in each task.

	
	Priority

	Job priority (execution order), -1 means default.

	
	Max Run Tasks

	Maximum number of running at the same time tasks, -1 means no limit.

	
	Depend Mask

	Other job(s) name pattern to wait. Empty value means not wait any job.

	
	Global Depend

	Other job(s) pattern of any user to wait.

	
	Hosts Mask

	Hosts names pattern job tasks can run on. If empty job can run on any host.

	
	Exclude Hosts

	Hosts names pattern job tasks can not run on.

	
	Submit Job

	Construct a job and send it to server.

Job GUI

Job

[image: ../_images/blender_webgui_job.png]

Web GUI Jobs List.

Tasks

[image: ../_images/blender_webgui_tasks.png]

Web GUI Jobs Tasks List.

Cinema 4D

Afanasy Dialog

[image: ../_images/cinema4d_dialog_submission.png]
[image: ../_images/cinema4d_dialog_sheduling.png]
[image: ../_images/cinema4d_dialog_masks.png]

Submission

	
	Job Name

	Afanasy job name. Default is the scene-name

	
	Overwrite Output

	Overwrites the Render-Output-Path

	
	Priority

	Job order in user jobs list (‘-1’ means to keep this value default)

	
	Framerange

	Framerange to render on the farm

	
	By Frame

	Just renders every x frame. By default this is 1 so it renders every frame

	
	Bake Constraints

	Bakes the constraints and then saves a copy of the scene which gets rendered (currently it only bakes xxx)

	
	Do not copy Scene to Hosts

	By default it copies the scene and the textures locally to the farm and also renders the images locally.
After it finished it copies then the finished renderings back to the server.
If this is not wanted for some reason it can get deactivated here and it loads everything from the farm and saves directly to the farm

	
	Create Job Paused

	The submitted job is then paused and has to be started manually

Scheduling

	
	Frames per Task

	Number of frames in each task

	
	Max Hosts

	Maximum number of Hosts to use (0 means to keep the default value)

	
	Max Runtime (min)

	How long a frame is allowed to render maximum before it gets re-queued

	
	Capacity

	Tasks capacity value

Masks

	
	Hosts Mask

	Hosts names pattern where job can run on (empty value means that job can run on host with any name)

	
	Exclude Hosts Mask

	Hosts names pattern where job can not run on

	
	Depend Mask

	Same user jobs names pattern to wait to be done to start (empty value means not to wait any job)

	
	Global Depend Mask

	Same as Depend Mask, but waits for a jobs from any user

Clarisse iFX

In-App Submission

This a Python script.
It get some project attributes and creates a dialog.
In this dialog you can change parameters and send job to server.
By default script exports project to render archive with some temporary name.
And after render, when user deletes job, temporary archive will be deleted too.

General Tab

[image: ../_images/clarisse_dialog_a.png]

	
	Engine

	
	
	clarisse_node

	CGRU command used to launch Clarisse cnode. By default it will launch the latest (alphabetically) version.

	
	clarisse_render

	CGRU command used to launch Clarisse crender.

	
	cnode

	System command will be searched in PATH environment.

	
	crender

	System command will be searched in PATH environment.

Settings Tab

[image: ../_images/clarisse_dialog_b.png]
Negative value means use defaults.

Conditions Tab

[image: ../_images/clarisse_dialog_c.png]
Empty field disables condition.

AfWatch

[image: ../_images/clarisse_afwatch_job.png]

WebGUI

[image: ../_images/clarisse_webgui_job.png]

Setup

Shelf Item

[image: ../_images/clarisse_add_shelf_item.png]

AfStarter

You can also send Clarisse render archive to Afanasy with a stand-alone dialog AfStarter.
You do not need to open main Clarisse application (GUI) for it.

Developers

In-app submission dialog GUI is created with PyQt (PySide).
Qt binding in Python is represented by a Qt.
It chooses existing Qt binding automatically.

Submission script:

https://github.com/CGRU/cgru/blob/master/plugins/clarisse/afanasy_submit.py

Fusion

Menu

There is a script that raises a dialog that constructs and send jobs to server.

[image: ../_images/fusion_main_menu.png]

Dialog

[image: ../_images/fusion_dialog.png]

	Start Frame

	First frame to render.

	Last Frame

	Last frame to render.

	Frames Per Task

	Number of frames in task.

Job GUI

[image: ../_images/fusion_webgui_job.png]

Setup

You can just run Fusion from Keeper.
This way menu item (script) will be added automatically by preferences manipulation.

To setup manually, you can copy script

cgru\plugins\fusion\Comp\Afanasy.eyeonscript

to Fusion scripts folder

C:\Program Files\Blackmagic Design\Fusion\Scripts\Comp

Houdini

Afanasy is represented by a special multi-functional ROP.
You can connect several other ROP-s to Afanasy ROP to render.
You can connect several Afanasy ROP-s to Afanasy ROP for a job with a complex dependencies.

Afanasy ROP

	
	Submit

	Generate a job and send it to server.

	
	Start Paused

	Send a job in off-line state.

	
	Preview Approval

	Set job preview approval flag.
For example, if sequential is 10, it will render every 10 frame and wait for approve.

General

[image: ../_images/houdini_afrop_general.png]

Afanasy ROP General tab

	
	Job Name

	Afanasy job name.

	
	Output Driver

	You can not (don’t want) to connect Afanasy ROP to render ROP, you can specify it.

	
	Valid Frame Range:

	
	
	Render Any Frame

	Use frame range form downstream node. Or render current frame if no range in network defined.

	
	Render Frame Range

	Render this specified frame range.

	
	Render Frame Range Only (Strict)

	Render this specified frame range. Other ROP-s will wait this whole frame range rendered.

	
	Single Task

	
	Generate single task for whole frame range, useful for simulations.

	
	Local Render

	Render on the local render client.
Job host mask will be automatically set to the local host name.

	
	Frames Per Task

	Number of frames in each task.

	
	Sequential

	

	1

	Render frames one by one from the first to the last

	10

	Render every 10 frame at first, than render last other frames

	-1

	Render frames backwards from the last to the first

	-10

	Render every 10 frame at first backwards, than render last other frames backwards

	0

	Render the first, the last, the middle, the middle of the middle and so on

	
	Wait Time

	Set job time_wait parameter to the current day Hours and Minutes.
If current time will be greater than specified, the next day will be used.

	
	Render With Take

	Specify take to render.

	
	Connected Nodes Are Independent

	Allow run the same frames of all connected nodes at the same time.

	
	Allow Sub-Task Dependence

	Tasks can wait other tasks to be done partially.
Useful for simulations.
Frames render can start w/o waiting the whole simulation is finished.

	
	Ignore ROP Inputs

	Do not execute input ROP-s.

Parameters

[image: ../_images/houdini_afrop_parameters.png]

Afanasy ROP Parameters tab

	
	Platform

	
	OS type the job can launch tasks on:

	
	Any: any OS.

	Native: the same as this OTL was launched on.

	
	Tickets

	
	Use tickets:

	
	Auto: Submission script will try to set tickets automatically, depending on the ROP to render.

	Memory: If not zero, this amount of MEM tickets will be set.

	Aux: Any other tickets string as TICKET:COUNT comma separated list.

	
	Pools

	Use pools that are specified as pool:priority comma separated list.

	
	Enable Extended Parameters

	To switch ON/OFF it fast.

	
	Job Branch

	$HIP should be used in most cases.
No matter how deep you placed hip file in file-system.
It just help to find server an existing parent branch (department, project, scene).

	
	Hosts Mask

	Hosts names pattern where job can run on (empty value means that job can run on host with any name).

	
	Exclude

	Hosts Mask Exclude: Hosts names pattern where job can not to run on.

	
	Depend Mask

	Same user jobs names pattern to wait to be done to start

	
	Global

	Depend Mask Global: Same as Depend Mask, but waits for a jobs from any user.

	
	Priority

	Job order in user jobs list
(-1 means to use default value).

	
	Maximum Running Tasks

	Maximum tasks job can run at the same time
(-1 means no limit).

	
	Per Host

	Maximum Running Tasks Per Host: Maximum running tasks on the same host.
(-1 means no limit).

	
	Capacity

	Tasks capacity value (-1 means use default value).
Render must have enough free capacity to run it.

	
	Render Time Min

	Minimum time task should run (seconds).
Sometimes tasks finishes with a good exit status too early.

	
	Max

	Task maximum running time (in hours).
If task will not finish after this time,
it will considered as an error and will be restarted.

	
	Progress Timeout

	If a task will not produce any output for this time (in hours),
it will be considered as an error.

	
	Min RAM

	Minimum free memory (Gigabytes) should have render client to be able to start a task.

	
	Override Service

	This will be any custom service name for a job block tasks.

	
	Parser

	Override Parser: This will be any custom parser name for a job block tasks.

	
	Life Time

	DONE job will be automatically deleted after this time (in hours).
Useful for some auxiliary jobs.

	
	Files Check

	Service (task instanced Python class) can check rendered files for existence.
Submitter (script) should know file names that task should produce.
Can not work on expressions/takes/overrides.

	
	Skip Existing

	Render can check files for existence before run task command.

Environment

[image: ../_images/houdini_afrop_environment.png]

Afanasy ROP Environment tab

	
	Environment

	It is key-value dictionary.
Key used as an environment variable name.
This environment variables will be added to task process environment.

	
	Get Houdini Environment

	Get and store in variables Houdini location and version.
It can be used in setup scripts to launch the same version, initialize proper plug-ins.

	
	Remove Houdini Environment

	Remove Houdini related variables (starting with “HOUDINI_”).

	
	Clear Environment

	Remove all variables.

Distribute Simulation

[image: ../_images/houdini_afrop_distributed.png]

Afanasy ROP Separate Render tab

	
	Controls Node

	Distributed simulation control node.

	
	Number Of Slices

	Distributed simulation slices number.

	Tracker Parameters

Distributed simulation slices tasks should communicate via tracker service.

	
	Capacity

	Tracker task capacity.

	
	Host Mask

	Tracker will run only hosts that names match this regular expression.

	
	Service

	Tracker task service.

	
	Parser

	Tracker task parser.

	
	Manual Tracker

	Use manual launched tracker service at specified Address and Port

Separate Render

Separate Render allows to separate render process on IFD files generation and render it by mantra.
It can give several advantages on some heavy scenes.

Separate render generates a job that can:

	Render images locally in temporary folder and copy whole image after successful render.
It can save your network traffic as render do not send small portions of an image during render process.

	Generate IFD file locally and then render it in separate process but in the same task.
It can save render memory.

	Split one frame on tiles to render them simultaneously.
So you can increase speed of one frame render.
And also it can reduce memory needed to render a frame.

	Cleanup rendered IFD files and joined tiles images.

[image: ../_images/houdini_afrop_separate.png]

Afanasy ROP Separate Render tab

	
	Enable Separate Render

	Turn this feature on.

	
	Run ROP

	Run ROP to generate files to render.
Houdini will generate IFD files for mantra.

	
	Join Render Stages

	Generate IFD files and render in the same task.
In this case IFD files will be generated to local temporary folder.
It can save and memory usage and network traffic.

	
	Read Parameters from ROP

	Read files to generate and images to render parameters from specified ROP.

	
	Render Arguments

	Arguments for render command.
Usually files and may be some other options.

	
	Files

	Files to generate.

	
	Delete ROP Files On Job Deletion

	ROP files (IFD-s) can be deleted when user will delete the job.

	
	Images

	Images which render will produce. Needed for tile render, AfWatch preview/thumbnails.

	
	Tile Render

	Enable rendering tiles and then combine them.

	
	Divisions

	Tiles divisions.

Custom Command

Run any custom command.
For example you can render IFD files using mantra command,
generate a preview movie with ffmpeg.

[image: ../_images/houdini_afrop_command.png]

Afanasy ROP Custom Command tab

	
	Custom Command Mode

	Add custom command tasks block to a job.

	
	Name

	Tasks block name.
If empty the first word of the command will be used.

	
	Command

	The command.

	
	Prefix with $AF_CMD_PREFIX

	Add $AF_CMD_PREFIX environment variable value to the beginning of the command.
This may be needed for some software (environment) setup.

	
	Files

	Some files you can point to use in command.

	
	Delete Files On Job Deletion

	Delete this files when user will delete job.

	
	Preview

	Specify result picture here to enable tasks preview.

	
	Service

	Tasks block service.
If empty the first word of the command will be used.

	
	Parser

	Tasks block parser.

SOHO

This can be used to explain other ROP network what to do with Afanasy node.

[image: ../_images/houdini_afrop_soho.png]

Afanasy ROP SOHO tab

	
	Afanasy ROP

	Specify Afanasy ROP to execute by SOHO.

	
	Program

	Script that will be executed on SOHO demand.
That default script will execute Submit button on a specified Afanasy ROP.

ROP Examples

Simple

Just connect afanasy ROP to your render ROP.

[image: ../_images/houdini_simple_network.png]

Simple Network

[image: ../_images/houdini_simple_job.png]

Simple Job

[image: ../_images/houdini_simple_tasks.png]

Simple Job Tasks

The job consists of single tasks block.
Each task represents a frame or several number of frames, specified in Frames Per Task parameter.

Command Render

You can send any custom command to your farm.
Usually you need separate IFD files generation and run mantra as a standalone process to render.

[image: ../_images/houdini_command_network.png]

Command Network

[image: ../_images/houdini_command_job.png]

Command Job

[image: ../_images/houdini_command_tasks.png]

Command Job Tasks

This job consists of two blocks of tasks.
The first block produced by mantra_ifd node, with Disk File parameter turned on.
Next block runs mantra with files parameter pointing to the generated files.

Tile Render

You can split single image to render on several hosts.
Each host (task) will produce a tile - some part of an image.
Tiles will be combined in a single image.

[image: ../_images/houdini_tilerender_network.png]

Tile Render Network

[image: ../_images/houdini_tilerender_job.png]

Tile Render Job

[image: ../_images/houdini_tilerender_tasks.png]

Tile Render Job Tasks

Tile job consists of three blocks:

	
	Generate

	Generate IFD files.

	
	Render

	Render tiles with mantra standalone process.

	
	Join

	Join tiles to assemble an image.
If tiles were successfully joined they will be removed.
At the end of this stage, IFD will be removed, if it was asked.

Houdini native itilestitch tool is used to join tiles.

Sub Task Dependence

This option is designed to start to render simulation without waiting the whole simulation is finished.

[image: ../_images/houdini_subtask_network.png]

Sub-Task Dependence Network

The first block of a job is a simulation.
It consists of a single task (Frames Per Task parameter is set to the whole frame range).
The second block set to wait the first one with sub-task dependence.
So it begins to render as first frames of a simulation completed, while the simulation task is still running.

[image: ../_images/houdini_subtask_job.png]

Sub-Task Dependence Job

We also can notice here, that the render block got HYTHON and MANTRA tickets,
while the simulation block got only HYTHON ticket

[image: ../_images/houdini_subtask_tasks.png]

Sub-Task Dependence Job Tasks

Complex

You can construct a complex Afanasy ROP network to construct a complex job.

[image: ../_images/houdini_complex_network.png]

Complex Network

[image: ../_images/houdini_complex_job.png]

Complex Job

This job consists of a simulation with sub-task dependence.
Two caches waiting the simulation, but can run independently from each other.
Mantra tile render which produces three blocks which wait all the cache.
Two blocks for preview which can run independently but wait tile render tasks.
One to convert EXR files to JPEG-s and one to generate a preview movie form EXR-s.

Distributed Simulations

Houdini can calculate the same simulation on several machines.

How It Works

Simulation can be split on slices, so each machine calculates own slice.
But different slices simulations should exchange information to pass data from slice to slice.
Houdini has a special Python script simtracker.py for it.
It needs to launch a server that simulations will connect to.
So each slice simulation should know tracker address and port.
Also tracker has a simple web interface to see logs.

What We Should Do

	Prepare distributed simulation, setup slices.

	Launch tracker server and get its address and port.

	Open several Houdini applications with simulation scene (on different machines or not).

	Specify tracker and port.

	Start each Houdini instance to simulate own slice.

	Stop tracker.

So, you can distribute Houdini simulation without any render farm manager.

Step-By-Step

	Create a sphere.

	Create simulation via Wispy Smoke shelf tool.

	Apply Distribute Container shelf tool.

	You will be moved to /out/ network.

	Create Afanasy ROP node.

	Set Output Driver to /obj/distribute_pyro/save_slices
and in the Distributed Simulation tab set Controls Node to /obj/AutoDopNetwork/DISRIBUTE_pyro_CONTROLS.
You can copy this values from HQueue Simulation ROP that was automatically created.

[image: ../_images/houdini_distribpyro_afgeneral.png]

Genetal Tab

[image: ../_images/houdini_distribpyro_afdistrib.png]

Distributed Simulation Tab

	Uncheck Render Temporary HIP File option on Afanasy ROP.
By default, Afanasy renders a temporary scene to allow user to continue working with original file.
But in this case $HIPNAME variable will change, and it widely used in shelf tools and examples.

	Go to /obj/AutoDopNetwork/.

	Remove resize_container node.

	
	Disconnect distribute_pyro node from merge node (do not merge it with source). And connect it to the solver Velocity Update input.

	
[image: ../_images/houdini_distribpyro_dop_orig.png]

Original network

[image: ../_images/houdini_distribpyro_dop_adjust.png]

Adjusted network

	Set slices divisions 1 x 2 x 1.

	Now you can submit simulation by Afanasy ROP in /out/ network.

Afanasy Job

Afanasy will create a job that consists of four blocks each contains just one task.
First block task to start tracker.
A block (task) for each slice that waits tracker start.
And the last block task to stop the tracker.

[image: ../_images/houdini_distribpyro_job_running.png]

Distributed Simulation Job Running

	tracker

The first task block has a special service htracker.
This service just adds job ID to the task command.
Job ID is needed to manipulate job using JSON protocol.
The command calls a special CGRU Python script plugins/houdini/htracker.py.

htracker --start --envblocks "save_slices.*|tracker-stop" --depblocks "save_slices.*"

	It starts Houdini simtracker in a separate thread and gets its address and port.

	Set other job blocks environment variables TRACKER_ADDRESS and TRACKER_PORT
to blocks specified by –envblocks argument.

	Set slices job blocks depend masks to an empty string
to blocks specified by –depblocks argument,
So that blocks will wait nothing and can to start.

	Waits simtracker for completion.

	save_slices-s0

The first slice simulation.
Slices are simulated by CGRU multi-functional Hython script
cgru/plugins/houdini/hrendef_af.py that Afanasy uses for almost everything.

hrender_af -s 1001 -e 1133 --by 1 -t "_current_" --ds_node "/obj/AutoDopNetwork/DISTRIBUTE_pyro_CONTROLS" --ds_address "localhost" --ds_port 8000 --ds_slice 0 "/opt/cgru/examples/houdini/distrib_pyro.hip" "/obj/distribute_pyro/save_slices"

Control node, tracker address and tracker port,
that was specified in Afanasy ROP and passed by command line argument,
will be overridden by environment variables.

Script will open HIP file, set control node tracker address and port parameters.
Set SLICE variable to the specified slice number.

Run simulation ROP.

	save_slices-s1

The second slice simulation. It is the same as the first, but with one key difference.
Slice will be equal to 1.

hrender_af -s 1001 -e 1133 --by 1 -t "_current_" --ds_node "/obj/AutoDopNetwork/DISTRIBUTE_pyro_CONTROLS" --ds_address "localhost" --ds_port 8000 --ds_slice 1 "/opt/cgru/examples/houdini/distrib_pyro.hip" "/obj/distribute_pyro/save_slices"

	tracker-stop

Stop tracker. It will be performed by the same script that starts tracker.

htracker --stop

It just sends quit string to tracker_address:tracker_port socket.

[image: ../_images/houdini_distribpyro_job_done.png]

Distributed Job Done

[image: ../_images/houdini_distribpyro_job_stopping.png]

Distributed Job Stopping

[image: ../_images/houdini_distribpyro_tasks.png]

Distributed Job Tasks

Afanasy TOP Scheduler

This node executes work items on farm using Afanasy render manager.
It can schedule work items from TOP UI, and as standalone job.
Using a standalone job you can close Houdini session and watch progress via Afanasy GUI.

[image: ../_images/houdini_pdg_cooking1.png]

[image: ../_images/houdini_pdg_cooking2.png]

Scheduling from Houdini TOP UI

[image: ../_images/houdini_pdg_job1.png]

[image: ../_images/houdini_pdg_job2.png]

[image: ../_images/houdini_pdg_job3.png]

Scheduling using a standalone job

Here is the scheduler nodes parameters description.
Almost anywhere in Afanasy -1 means that the value is not set and defaults will be used.

Scheduling Parameters

[image: ../_images/houdini_pdg_scheduler.png]

Afanasy TOP Shecduler tab

	
	Job Name

	The name of the job where work items tasks will be appended to.

	
	Job Branch

	The branch of the job. The same value will be used if you submit graph as job.

	
	PDG Directory

	Specifies the directory where the cook generates intermediate files.
The intermediate files are placed in a subdirectory named pdgtemp.

	
	Path Mapping

	
	
	Global

	If the PDG Path Map exists, then it is applied to file paths.

	
	None

	Delocalizes paths using the PDG_DIR token.

	
	Path Map Zone

	When on, specifies a custom mapping zone to apply to all jobs executed by this scheduler.
Otherwise, the local platform is LINUX, MAC or WIN.

Submit Graph As Job

	
	Submit Graph As Job

	Cooks the entire TOP network as a standalone job.
Displays the status URI for the submitted job.
The submitting Houdini session is detached from the cooking of the TOP network.

	
	Start Paused

	Start graph cooking job paused.

	
	Priority

	Graph cooking job priority value.

	
	Capacity

	Cooking task capacity.

	
	Hosts Mask

	Hosts names regular expression, where graph job can run.

	
	Exclude

	Hosts names regular expression, where graph job can not run.

	
	Depend Mask

	Current user jobs names expression, that job will wait to start for.

	
	Global

	Any user jobs names expression, that job will wait to start for.

	
	Service

	Cooking job task block service name.

	
	Ticket

	Cooking job task block will need and take one ticket with this name.
See tickets documentation for details.

Tasks Parameters

You can override this parameters on each TOP node,
except Job Priority which will be set to an entire job.

[image: ../_images/houdini_pdg_parameters.png]

Afanasy TOP Tasks Parameters tab

	
	Job Priority

	Priority value of a job were working items tasks will be executed.

	
	Capacity

	Work items tasks block capacity.

	
	Hosts Mask

	Hosts names regular expression, where tasks can run.

	
	Exclude

	Hosts names regular expression, where tasks can not run.

	
	Max Running Tasks

	Running tasks count at the same time limit.

	
	Per Host

	Running tasks count at the same time on the same host limit.

	
	Render Time Min (Sec)

	Minimum task running time limit.
If task will finish for seconds below this value,
task finish will be considered as with an error.

	
	Max (Hours)

	Maximum task running time limit.
If task will run for hours above this value,
it will be forced to stop with an error.

	
	Min RAM (GB)

	Host should have this count of Gigabytes of a free RAM
to be able to run tasks.

	
	Service

	Tasks block service.
If empty it will try to detect automatically.
If node fetches ifd ROP, service will be hbatch_mantra,
ffmpegencodevideo will be ffmpeg.

	
	Tickets

	asks block tickets. A comma separated list of key:count.
Example: MEM:64,GPU:1.
See tickets documentation for details.

	
	Auto

	Automatically add common tickets.
Almost all tasks launch hython, so HYTHON ticket will be added.
If node fetches ifd ROP, MANTRA ticket will be added.

	
	Environment

	Adds custom key-value environment variables to tasks block.

To override task parameter on TOP node add it via Edit Parameter Interface window:

[image: ../_images/houdini_pdg_edit_parameter_interface.png]

Edit Parameter Interface window

Adjustment Parameters

[image: ../_images/houdini_pdg_adjustment.png]

Afanasy TOP Adjustment tab

	
	Report Item Fail On Error

	If task gets error state, scheduler will report PDG that work item failed.
You can turn it off and try to solve errors via Afanasy only.
Read output for an error cause, try to fix it, restart task.
And PDG will know nothing about it.

	
	Block On Failed Work Items

	When this option is enabled the scheduler will block the cook from completing
if there are any failed work items in that scheduler.
This makes it possible to manually retry those work items,
by preventing the PDG graph cook from ending before failed items can be retried.
A cook that is blocked on failed work items can still be canceled using the ESC key,
the cancel button in the TOP task bar, or the cancel API method.

	
	Validate Outputs When Recooking

	When enabled, PDG will check the output files of work items when the graph recooks,
to see if the files still exist on disk.
Work items that are missing output files will be dirtied and cook again.

	
	Check Expected Outputs On Disk

	When enabled, PDG will look on disk for any expected work items outputs
that were not explicitly reported when the work item cooked.
Expected outputs for a work item are checked immediately after the scheduler marks the work item as cooked.
Output files that were reported by the work item normally while cooking will not be checked.

	
	Use IP Address

	Use IP address instead of host name as work item result server address.
Some times render farm can’t solve workstations by name.
Also it can save DNS load.

Work item task can send progress to PDG itself.
It is used by batch work item to notify that a specific frame (item in the batch) is done.
This way PDG can start to render images when just first frames of a simulation rendered,
and there is no need to wait the entire simulation finish.
So work item should know address and port to send progress to.

	
	Tick Period

	Sets the minimum time (in seconds) between calls to the onTick callback.
This callback is called periodically when the graph is cooking.
The callback is generally used to check the state of running work items.

Afanasy server heart beat is 1 second,
so there is no sense to set this parameter less than a second.

	
	Max Items Per Tick

	Sets the maximum number of ready item onSchedule callbacks between ticks.

For example by default the tick period is 1s and the max items per tick is 30.
This means that scheduler can send a maximum of 30 work items per second to farm.
Adjusting these values can be useful to control the load on the farm scheduler.

Setup

CGRU setup should be sourced before.
To do this you can source setup.sh script in CGRU root folder.
Afanasy Houdini operator library and Python module are located in:

cgru/plugins/houdini

You should add this folder HOUDINI_PATH and PYTHONPATH environment variables.

Houdini setup example (bash):

Setup CGRU
cd /opt/cgru
source ./setup.sh

Setup CGRU houdini plugins location:
export HOUDINI_CGRU_PATH="${CGRU_LOCATION}/plugins/houdini"

Append HOUDINI_PATH with CGRU plugins:
export HOUDINI_PATH="${HOUDINI_CGRU_PATH}:&"

Append Python path with afanasy submission script:
export PYTHONPATH="${HOUDINI_CGRU_PATH}:${PYTHONPATH}"

If you avoid sourcing cgru/setup.sh see Manual Environment Setup.

Maya

Warning

Documentation is outdated.

meTools for Afanasy

http://meshstudio.blogspot.ru/2013/01/metools-for-afanasy.html

Maya VRay, Arnold and MentalRay standalone rendering.

Stand-Alone Dialog

Use AfStarter

The Simplest MEL Dialog

[image: ../_images/maya_dialog.png]
Afanasy menuitem in CGRU raises a window.
Dialog is minimalistic but enough to do anything that needed in most cases.
It can render any engine type: Software, VRay, Arnold, MentalRay or whatever.
It simple runs Maya Render command and ask it to open scene and render special frame(s).
All render settings Maya takes from render globals in this case.

CGRU Maya

A set of MEL scripts and a plug-in.

Documentation:

https://cgru.info/maya

Natron

CGRU in Natron consists of Afanasy node (group) and menu items in main CGRU menu.

Afanasy nodes need to render connected Write nodes and to store render settings.
You can connect one Afanasy node to other Afanasy node to render other Write node with different settings at the same time.
Each connected node will produce a block - an array of tasks (frames) to render.
You can specify dependence between connected nodes.

[image: ../_images/natron_node_graph.png]

Node Graph

[image: ../_images/natron_webgui_job.png]

Job (Web GUI)

Afanasy Node

General

[image: ../_images/natron_afanasy_general.png]

	
	Job Name

	Name to add to job or blocks names.
If empty, Afanasy node label will be used.

	
	Get Frame Range From Project Settings

	Set first and last frames to project settings.

	
	First Frame

	First frame to render.

	
	Last Frame

	Last frame to render.

	
	Increment

	Frames increment step.

	
	Frames Per Task

	Number of frames in task.

	
	Sequential

	Frames solving method.

	
	Send Afanasy Job

	Construct and send job to Afanasy server.

	
	Start Job Paused

	Job will be send paused.

Scheduling

[image: ../_images/natron_afanasy_scheduling.png]

	
	Platform

	OS type the job can launch tasks on: ‘Any’ - any OS, ‘Native’ - the same as the script was launched on.

	
	Capacity

	Tasks capacity. ‘-1’ - use default value.

	
	Max Running Tasks

	Maximum number of running at the same time tasks. ‘-1’ means no limit.

	
	Max Tasks Per Host

	Maximum number of running at the same time at the same host tasks. ‘-1’ means no limit.

	
	Priority

	Job priority. ‘-1’ - set default priority value.

	
	Hosts Mask

	Job will only on hosts which name matches this pattern.

	
	Exclude Hosts Mask

	Job will not run on hosts which name matches pattern.

	
	Depend mask

	Job will wait job(s) to be done, which name(s) matches pattern.

	
	Global Depend mask

	The same, but will wait for jobs from any user.

MultiWrite

[image: ../_images/natron_afanasy_multiwrite.png]

	
	Connected Nodes Are Independent

	Nodes can run at the same time, they will not wait each other.

	
	Wait Whole Frame Range

	Down stream connected node(s) will wait until whole specified frame range will be rendered.
If not checked, each frame will be wait only corresponding frame(s) from this node.

	
	Force upstream frame settings

	All upstream connected Afanasy nodes will use this node frame range.

Complex Situation

In this example Final Write waits Back and Front precomps to be rendered.

[image: ../_images/natron_complex_network.png]

Complex Network

First job block from w_final Write node has af_pre.* tasks depend mask.
This means that it will wait all Write nodes that connected to af_pre Afanasy group.

[image: ../_images/natron_complex_job.png]

Complex Job (Web GUI)

Examples are located in cgru/examples/natron.

Render Selected

[image: ../_images/natron_render_selected_dialog.png]

	
	First Frame

	First frame to render.

	
	Last Frame

	Last frame to render.

	
	Per Task

	Number of frames in task.

	
	Send Job Paused

	Job will be paused.

Setup

If you start Natron from CGRU Keeper all should work automatically.

Manual Setup

CGRU Natron plugins are located in

cgru/plugins/natron

Add this path to NATRON_PLUGIN_PATH environment variable.

Nuke

CGRU Menu

[image: ../_images/nuke_cgru_menu.png]

Nuke CGRU Menu

Nuke Afanasy interface consists of afanasy nodes (gizmos) and menu items in main CGRU menu.

[image: ../_images/nuke_simple_network.png]

Complex Node Network

Just create afanasy gizmo (F10) and connect it to Write node to render.

[image: ../_images/nuke_simple_job.png]

Complex Job (AfWatch)

Afanasy Gizmo

General

[image: ../_images/nuke_afanasy_general.png]

Afanasy Gizmo General Tab

	
	Job Name

	Name to add to job or blocks names.
If empty, ‘afanasy’ node name will be used.

	
	Use Root Time Range

	Set ‘First Frame’ and ‘Last Frame’ fields to project settings.

	
	First Frame

	First frame to render.

	
	Last

	Last frame to render.

	
	Increment

	Frame increment.

	
	Frames Per Task

	Number of frames in task.

	
	Sequential

	

	1

	Render frames one by one from the first to the last

	10

	Render every 10 frame at first, than render last other frames

	-1

	Render frames backwards from the last to the first

	-10

	Render every 10 frame at first backwards, than render last other frames backwards

	0

	Render the first, the last, the middle, the middle of the middle and so on

	
	Skip Existing Files

	Skip existing files works fine, when Frames Per Task is 1

	
	Render

	Send job to Afanasy server.

	
	Start Paused

	Job will be sent in offline state.

	
	Time Code

	Two Time Codes from - to.

	
	Use

	Use Time Code instead of frame range.
If Time Code is empty, frame range will be used.

	
	Get

	Get Time Code from frame range.

	
	Set

	Set frame range from Time Code.

Parameters

[image: ../_images/nuke_afanasy_parameters.png]

Afanasy Gizmo Parameters Tab

	
	Platform

	OS type the job can launch tasks on: Any - any OS,
Native - the same as the script was launched on.

	
	Max Running Tasks

	Maximum number of running tasks at the same time.
-1 means no limit.

	
	Priority

	Job priority.
-1 - use default priority value.

	
	Hosts Mask

	If not empty, job can run only on hosts which name matches this pattern.

	
	Exclude Hosts Mask

	If not empty, job can not run on hosts which name matches pattern.

	
	Depend mask

	If not empty, job will wait job(s) to be done, which name(s) matches pattern.

	
	Global Depend mask

	The same, but will wait for jobs from any user.

	
	Capacity

	Tasks capacity.
-1 - use default value.

	
	Max Tasks Pet Host

	Maximum running tasks on the same host at the same time.

	
	Max Task Run Time

	Maximum task running time in seconds.
After this time, running task will be restarted.
Useful if script can hang.

MultiWrite

[image: ../_images/nuke_afanasy_multiwrite.png]

Afanasy Gizmo MuitiWrite Tab

	
	Connected nodes are independent

	nodes can run at the same time, they will not wait each other.

	
	Reverse dependences on connected nodes

	First block will wait second block.
Most depended “Write” node usually produces more final result,
and it will be executed as soon as possible.

	
	Down stream will wait for whole frame range rendered

	Down stream connected node(s) will wait until whole specified frame range will be rendered.
If not checked, each frame will be wait only corresponding frame(s) from this node.

	
	Force upstream frame settings

	All upstream connected nodes will use this node frame range.
Connected upstream node can re-force it, if this parameter is checked too.

	
	Construct single job from all connected write nodes

	Construct a block from each connected ‘Write’ node and put them into one job.
If not checked, each connected ‘Write’ node will produce a job.

Advanced

[image: ../_images/nuke_afanasy_advanced.png]

Afanasy Gizmo Advanced Tab

	
	Create and render temporary scene

	On job creation, nuke submission script saves scene to temporary name.
That temporary scene will be rendered and deleted on a job deletion.
This way artist can continue to modify and save working scene.
And all frame will be rendered from the same modified scene.

	
	Tickets

	Job Block tickets counts.
Syntax like: NAME1:count1,NAME2:count2.
Tasks will run only on pools that has enough free tickets.
See Tickets documentation for details.

	
	Pools

	Pools that job will run on with priorities.
Syntax like: name1:priority,name2:priority2.
Tasks will prefer pools with a greater priority.
See Pools documentation for details.

	
	Render to temporary image

	This can save network traffic, as the entire image will be saved at once.
By default Nuke writes a portions of rendered frame.

	
	Apply paths map to scene

	Transfer all scene files paths from client to server.
Using CGRU Path Map you can work and render on different platforms.

Environment

[image: ../_images/nuke_afanasy_environment.png]

Afanasy Gizmo Environment Tab

	
	Environment variables.

	This environment variables will be added to task process environment.

	
	Get Nuke Environment

	Get and store in variables Nuke location and version.
It can be used in setup scripts to launch the same version, initialize proper plug-ins.

Complex Job (Precomps)

[image: ../_images/nuke_complex_network.png]

Complex Node Network

You can connect one afanasy node to several Write and afanasy nodes.
Each connected node will produce a block - an array of tasks (frames) to render.
You can specify dependence between connected nodes.
This is useful to re-render precomps and the final result in a single job.

[image: ../_images/nuke_complex_job.png]

Complex Job (AfWatch)

Render Selected

You can send to farm selected node(s) using a simple dialog (F11).

[image: ../_images/nuke_render_selected_1.png]
[image: ../_images/nuke_render_selected_2.png]
1..5 - two numbers, separated with two points means the lowest and highest value from all selected nodes.
Type one number in input field to override frame settings on selected nodes.

	
	Nodes

	Selected nodes names. You can check and edit selection.

	
	First Frame

	First frame to render.

	
	Last Frame

	Last frame to render.

	
	Frames Per Task

	Number of frames in task.

	
	Store Frames Settings

	Store frame settings on selected nodes.

	
	Start Paused

	Job will be created in offline state.

Setup

You can launch nuke from CGRU Keeper and it set all needed environment.

Or you can setup CGRU manually.
Setup CGRU and append its cgru/nuke/plugnis to NUKE_PATH:

cd /opt/cgru

source ./setup.sh

export NUKE_PATH="${NUKE_PATH}:${CGRU_LOCATION}/plugins/nuke"

Softimage XSI

Afanasy Window

Submission

[image: ../_images/xsi_afwindow_submission.png]

Submission Tab

	
	Job Name

	Job name. Scene name by default. And pass name if render several passes at once.

	
	Pass

	Pass(es) to render. You can choose to render current, all or selected pass(es).

	
	Take Frame Range From Pass

	Render pass with its own frame range, if it is set.

	
	Force Pass Frame Range

	Render specified below frame range in any case.

	
	Start Frame

	First frame to render.

	
	End Frame

	Last frame to render.

	
	By Frame

	Frames increment.

	
	Frames Per Task

	Number of frames to render by one task.

	
	Simulate

	Force not to simulate by setting Play Control to Frame Range.

	
	Start Job Paused

	Send job in Off-line state.

[image: ../_images/xsi_afwatch_jobs.png]

Job (AfWatch)

Scheduling

[image: ../_images/xsi_afwindow_scheduling.png]

Scheduling Tab

	
	Priority

	Job Priority parameter, -1 use default priority.

	
	Capacity

	Job tasks Capacity, -1 use default capacity.

	
	Max Hosts

	Maximum Hosts the job can run on, -1 means no limit.

	
	Task Max Run Time

	Maximum Time, 0 means no limit.

	
	Hosts Mask

	Hostname Mask pattern, job can run on.

	
	Exclude Hosts Mask

	Hostname Mask Exclude pattern, job can not run on.

	
	Depend Mask

	Job names Depend Mask pattern, to wait other jobs to finish.

	
	Global Depend Mask

	Job names Depend Mask Global pattern, to wait other jobs from any user to finish.

VariRender

VariRender can help you to automatically increment some value and to render scene with different parameters at once.
For example particles with different seed, to increase their quantity by compositing.

[image: ../_images/xsi_afwindow_varirender.png]

VariRender Tab

	
	Enable VariRender

	Turn it on or off.

	
	Attribute

	Attribute name to variate.
Change some object parameter and look script editor, or command line for name.

	
	Start Value

	First value to start from.

	
	Step

	Value increment.

	
	Count

	Quantity of value increments.

This is a job from CGRU examples.
Rendering two passes with VariRender.

[image: ../_images/xsi_afwatch_varirender.png]

VariRender Job

For each pass it generates a job.
For each parameter value it generates a block of tasks.

Keeper

Description

Keeper is a system tray icon menu to launch and manage CGRU applications,
launch and configure other software.
It shows local afrender state with R character color,
and a local host memory usage, it asks afserver for render info.

Afanasy Menu:

[image: ../_images/tray_menu_afanasy.png]
Software Menu:

[image: ../_images/tray_menu_software.png]
Keeper also can listen port launch commands.
Afanasy WebGUI and RULES uses keeper to run something.

Start Keeper

	MS Windows: cgru\start.cmd

	Mac OS X: cgru/start.command

	Linux: cgru/start.sh

Linux CGRU package creates an item in Applications menu to launch Keeper:

[image: ../_images/linux_menu.png]

Launch System commands

Rules and Afanasy Web GUIs launch system commands via keeper.
Web browsers can’t launch system commands due security reasons.
But they can ask Keeper to launch a command.

Rules assumes to use secured HTTPS protocol, as designed to work over internet (external port).
Browsers can’t mix HTTPS and HTTP protocol for security reasons too.
So keeper should use HTTPS protocol for commands.
This means that we should setup Keeper HTTPS server.

HTTPS Server

Keeper uses HTTPServer module and a ssl module to wrap its socket.
On start it checks cgru/utilities/keeper/serverhttps.pem certificate file for existence.
To generate it you can execute:

openssl req -new -x509 -keyout serverhttps.pem -out serverhttps.pem -days 3656 -nodes

If this file exists, Keeper starts to listen 44443 port.

The next you should create a security exception in a browser for this certificate.
For this you should open Keeper test page and confirm a security exception.
To open Keeper test page you can use this Keeper tray menu item:
Configure -> HTTPS Server…

AfStarter

AfStarter is a standalone dialog to submit a job to Afanasy.

Supported software

	Adobe After Effects

	Autodesk 3D Studio Max

	Software

	VRay

	Autodesk Maya

	Software

	3DeLight

	VRay

	Arnold

	Mental Ray

	Redshift

	Autodesk SoftImage XSI

	Blender

	Internal

	Cycles

	Clarisse iFX

	Cinema 4D

	Fusion

	Isotropix Clarisse

	Natron

	SideFX Houdini

	HBatch (hython)

	Mantra (standalone)

	The Foundry Nuke

Scene Settings

[image: ../_images/dialog_scene.png]
Scene Parameters:

	File: Scene file path. IFD files sequence for Mantra.

	Working Directory/Project: Tasks process working folder, default is scene folder. Project path for Maya.

	Output Images: Some software allows to override output images in command line arguments.

	Frames: Frame range to render, ‘by’ - frames step or increment, ‘per task’ - number of frames in one task.

	Node/Camera: Houdini ROP, Nuke write node, Max, Maya camera to render, After FX composition.

	Take/Layer/Pass/Batch: Houdini take, SoftImage pass, Maya layer, Max batch to render, After FX render settings template.

	Recent: Store recent sent jobs settings.

	Start: Submit job to Afanasy server. It can be started in off-line state (“paused”).

Afanasy Job Settings

[image: ../_images/dialog_job.png]
Afanasy Parameters:

	Name: Job name, scene file name is used by default.

	Capacity: Tasks capacity attribute value. ‘-1’ means use the default.

	Priority: Job order in user jobs list.

	Maximum Running Tasks: Maximum number of tasks can be running at the same time.

	Depend Mask: Job(s) name pattern to wait to. Global: wait job(s) of any user.

	Hosts Mask: Host(s) name pattern to run on. Exclude: not to run on such hosts.

Regular Expressions

This is a standard Regular Expressions.
They are realized in almost all languages like C, C++, Python, JavaScript, bash, Perl, PHP, Ruby and others.
Some times such expressions called “Perl-like” as they were popularized within Perl at first.

AFANASY uses this expressions in hosts mask, depend masks and other patterns.

	Examples Expression

	Some Matched Names

	Description

	r1|r7|r12

	r1 r7 r12

	Only specified machines (“|” - means “or”)

	r1.

	r11-r19 r1a-r1z

	Names starts with “r” plus one any character (“.” - any (one) character)

	r.*

	r0 r1 rN rnd roman …

	All computers which name starts with “r” (“*” - any number or characters)

	r1.*

	r1 r10 r11 r102 r1asd …

	All computers which name starts with “r1”

	r1[178]

	r11 r17 r18

	Only specified machines, [1 or 7 or 8]

	r1[1-5]

	r11 r12 r13 r14 r15

	Only specified machines, [from 1 to 5]

	r0.|r1[1-5]

	r00-r09 r11-r15

	All r0# and from r11 to r15

Detailed documentation, examples, constructors and testers:

	http://en.wikipedia.org/wiki/Regular_expression

	http://www.google.com/search?q=Regular+Expressions

	http://www.google.com/search?q=Regular+Expressions+Examples

	http://www.google.com/search?q=Regular+Expressions+Tester

RegExp Checker

A simple dialog to check regular expressions provided with CGRU.

You can launch it from keeper: Afanasy -> Check RegExp…

[image: ../_images/regexp_checker.png]
Any render01-render04 or workstation01-workstation04.

Rules

Rules is a Web based CG project tracker.

Note

Documentation is not finished.

[image: ../_images/rules_scene.png]

Scene shots view.

For Rules server hosting you need a Linux server with Apache and PHP.

Player

You can play and annotate images sequences within Rules Player.

Examples

 Examples

Examples

CGRU examples are located in cgru/examples directory.

General tools for specific soft are located in cgru/plugins/[software_name].

Afanasy Tools for specific soft are located in cgru/afanasy/plugins/[software_name].

Run examples by executing script from it example directory.

Launch Blender example:

cd cgru/examples/blender
./start_blender.sh

MS Windows
You can double click application launch script in cgru\start directory, or create link to it, to launch example run its script.

Example for Blender: cgru\examples\blender\start_blender.cmd

 How To

How To

	Appending new tasks/blocks to an existing job
	JSON API

	Python af module

	Python afcmd module

	Known limitations

This is a set of guides for specific tasks.

 Appending new tasks/blocks to an existing job

Appending new tasks/blocks to an existing job

It is possible to add new tasks or blocks to a job that has already been sent to the farm. One can do it in several manners.

JSON API

The JSON API for actions features the two following operations:

append_tasks which takes a tasks list following the very same spec as when submitting new jobs, e.g.:

{
 "action":
 {
 "user_name" : "elie",
 "host_name" : "my_pc",
 "type" : "jobs",
 "ids" : [3],
 "block_ids" : [0],
 "operation" :
 {
 "type" : "append_tasks",
 "tasks" :[
 {
 "name" : "Extra Process A",
 "command" : "python -c \"print('Process EXTRA task A')\""
 },
 {
 "name" : "Extra Process B",
 "command" : "python -c \"print('Process EXTRA task B')\""
 }
]
 }
 }
}

append_blocks which takes a blocks list also following jobs submission spec, e.g.:

{
 "action":
 {
 "user_name" : "elie",
 "host_name" : "my_pc",
 "type" : "jobs",
 "ids" : [3],
 "operation" :
 {
 "type" : "append_blocks",
 "blocks" :[
 {
 "name" : "New numeric block",
 "tasks_name" : "frames @#@-@#@",
 "service" : "generic",
 "parser" : "generic",
 "flags" : 1,
 "frame_first" : 1,
 "frame_last" : 100,
 "frames_per_task" : 10,
 "frames_inc" : 2,
 "command" : "python -c \"print('Process frames @#@-@#@')\"",
 "working_directory" : "E:\\tmp"
 },
 {
 "name" : "New non numeric block",
 "tasks_name" : "frames @#@-@#@",
 "service" : "generic",
 "parser" : "generic",
 "working_directory" : "E:\\tmp",
 "tasks" : [
 {
 "command" : "python -c \"print('Process task A')\""
 },
 {
 "command" : "python -c \"print('Process task B')\""
 }
]
 }
]
 }
 }
}

Python af module

Two command methods are available in the Cmd object in af.py.

appendBlocks(jobId, blocks)

Example:

import af

block = af.Block('generic', 'generic')
block.setCommand("python -c \"print('Process frames @#@-@#@')\"")
block.setNumeric(1, 100, 10)

cmd = af.Cmd()
print(cmd.appendBlocks(3, [block]))

appendTasks(jobId, blockId, tasks)

Example:

import af

task = af.Task('test')
task.setCommand("python -c \"print('Process task A')\"")

cmd = af.Cmd()
print(cmd.appendTasks(3, 0, [task]))

Python afcmd module

Job.appendBlocks(blocks)

Example:

import afcmd

block = af.Block('generic', 'generic')
block.setCommand("python -c \"print('Process frames @#@-@#@')\"")
block.setNumeric(1, 100, 10)

job = afcmd.getJob(3)
print(job.appendBlocks([block]))

blockCopy = job.blocks[0]
print(job.appendBlocks([blockCopy]))

Block.appendTasks(tasks)

Example:

import afcmd

task = af.Task('test')
task.setCommand("python -c \"print('Process task A')\"")

job = afcmd.getJob(3)
block = job.blocks[0]
print(block.appendTasks([tasks]))

Known limitations

Numeric block

It does not makes sense to append tasks to numeric blocks, only non-numeric block can have tasks appended.

afwatch

When appending new blocks to a job that is opened in afwatch, one must reopen the job window to see the update.

 Coding Rules

Coding Rules

	Indentation: TAB. You can vary tab length, default 4 spaces length is normal. Except Python.

	Python indentation: 4 SPACES.

	Code alignment: SPACES, it should not break on various tab length.

	Variable names: variable_name.

	Function names: functionName.

	Class names: ClassName.

	Use prefixes to make code more readable:

	i_: Input variables.

	o_: Output variables.

	m_: Class members.

	ms_: Static class members.

	g_: External variables.

	v_: Virtual functions.

	Do not use ! as NOT, it is not noticeable while code passing view, much more easy to notice false ==

	Use const & to pass complex types as function parameters to not to copy class instance.

Example:

void someFunction(const SomeClass & i_some_class, int i_some_type)
{
 ...
}

// Function with a long parameters list:
bool someOtherFunction(
 std::string & o_status,
 const std::string & i_param1,
 const std::string & i_param2,
 const std::string & i_param3,
 const std::string & i_param4
)
{
 ...

 if (false == variable_name)
 {
 o_status = "error";
 return false;
 }

 return true;
}

Note

Afanasy code is not all written by this rules.
But better to write new code by this rules, and may be replace near parts.

Warning

Old code or new code written not by rules can be re-factored any time.

 The Nimby Situation

The Nimby Situation

[image: ../_images/nimby_1.jpg]
[image: ../_images/nimby_2.jpg]
[image: ../_images/nimby_3.jpg]
[image: ../_images/nimby_4.jpg]
[image: ../_images/nimby_5.jpg]

Spending much time with machines do not forget that we are humans

[image: ../_images/shashlik.jpg]

Do not let producers to torture you much

[image: ../_images/producers.svg]

 License

License

CGRU is licensed under the GNU Lesser General Public License (LGPL) license.

It includes some tools and libraries:

	
	License

	ImageMagick

	no limitations

	FFMpeg

	LGPL

	PostgreSQL

	A liberal Open Source license, similar to the BSD or MIT licenses.

	PySide

	LGPL

	PyQt

	GPL or Commercial. Will be used only if PySide is not installed.

	Python

	no limitations

	Qt

	LGPL

 About

About

CGRU is a CG tools pack includes AFANASY - Free Open Source Render Farm Manager.

Name “CGRU” - came from CG - Rules. It has two meanings: computer graphics principles and computer graphics is a cool thing.

Name “Afanasy” - came from a Greek name meaning “immortal”.

http://en.wikipedia.org/wiki/Afanasy

Companies

	Algous | http://www.algousstudio.ru

	Artjail | https://www.artjail.com/

	Asymmetric VFX | http://www.a-vfx.ru/

	Cinnamon VFX | http://cinnamon.com.ua

	EMG | http://emg.fm

	Ghost A/S | http://ghost.dk

	Istudios Visuals | http://www.istudios.se

	Kiev Postproduction | http://www.kievpostproduction.com

	Main Road Post | https://mrpost.ru

	Overmind Studios | http://www.overmind-studios.de

	Platige Image | https://www.platige.com

	Post Kino | https://postkino.ru/

	Postmodern | http://postmodern.com.ua/

	Redchillies VFX | http://redchilliesvfx.com/

	R-Studios | http://www.r-studios.ru

	Rise FX | https://risefx.com

	Terminal FX | http://terminalfx.com

	TurboRender | https://turborender.com

	Unit Five | https://u5fx.ru

	Virtual Republic | https://virtualrepublic.org/

Projects

	Wanted (2008) http://www.imdb.com/title/tt0493464/

	Obitaemyy ostrov (2008) http://www.imdb.com/title/tt0972558/

	Chernaya Molniya (2009) http://www.imdb.com/title/tt1569364/

	High Security Vacation (2009) http://www.imdb.com/title/tt1438463/

	Death Race 2 (2010) http://www.imdb.com/title/tt1500491/

	Blue Crush 2 (2011) http://www.imdb.com/title/tt1630626/

	Elena (2011) http://www.imdb.com/title/tt1925421/

	Vykrutasy (2011) http://www.imdb.com/title/tt1682187/

	Scorpion King: Battle for Redemption (2011) http://www.imdb.com/title/tt1781896/

	The Darkest Hour (2011) http://www.imdb.com/title/tt1093357/

	Visotsky (2011) http://www.imdb.com/title/tt2116974/

	Project: S.E.R.A. (2012) http://www.imdb.com/title/tt2083304/

	An Enemy to Die For (2012) http://www.imdb.com/title/tt1904887/

	Shpion (2012) http://www.imdb.com/title/tt2321517/

	Step Up Revolution (2012) http://www.imdb.com/title/tt1800741/

	Universal Soldier: Day of Reckoning (2012) http://www.imdb.com/title/tt1659343/

	The Lords of Salem (2012) http://www.imdb.com/title/tt1731697/

	Dead in Tombstone (Video 2012) http://www.imdb.com/title/tt2268419/

	Unforgotten Shadows (2013) http://www.imdb.com/title/tt2245906/

	Pawn Shop Chronicles (2013) http://www.imdb.com/title/tt1741243/

	Metro (2013) http://www.imdb.com/title/tt2649128/

	The Zero Theorem (2013) http://www.imdb.com/title/tt2333804/

	Project S.E.R.A (2013) http://www.imdb.com/title/tt2806258/

	Poddubnyy (2013) http://www.imdb.com/title/tt3767246/

	Bistree Chem Kroliki (2013) http://www.imdb.com/title/tt3451498/

	Kukhnya v Parizhe (2014) http://www.imdb.com/title/tt3711466/

	Le grimoire d’Arkandias (2014) http://www.imdb.com/title/tt3022526/

	Nobody from Nowhere (2014) http://www.imdb.com/title/tt3161960/

	Papa ou maman (2015) http://www.imdb.com/title/tt4080672/

	Robin des Bois, la véritable histoire (2015) http://www.imdb.com/title/tt4032428/

	Stavka na lyubov (2016) https://www.imdb.com/title/tt5179324/

	Strana chudes (2016) https://www.imdb.com/title/tt5430020/

	Super Family (2016) https://www.imdb.com/title/tt5576334/

	Posledniy bogatyr (2017) https://www.imdb.com/title/tt6175394/

	Super Family 2 (2018) https://www.imdb.com/title/tt9398222/

	Tobol (2019) https://www.imdb.com/title/tt9795368/

	Streltsov (2020) https://www.imdb.com/title/tt12058242/

	Chernobyl (2020) https://www.imdb.com/title/tt10648714/

	Posledniy bogatyr. Koren’ Zla (2021) https://www.imdb.com/title/tt13606158/

History

CGRU project was started in 2005 as Maya (3d software name) tools pack.
It included 3d modeling tools and rules. And was designed to join Maya MEL scripts and plug-ins from several artists.
It still exists [https://cgru.info/maya/index.html] but as a part of the project.
Later the project started to include tools for other software and a render farm manager.
Moved on SourceForge [https://sourceforge.net/projects/cgru/] and lost all not open-source tools.

Afanasy was started in 2007.
In 2008 a fist working alpha version started to solve jobs on real VFX projects in “Film Direction” (Russia).
It was merged with CGRU project on SourceForge and became open-source.
Now it is a main part of CGRU project and other tools can be considered as an utilities for it.
So we may say that CGRU consist of Afanasy render manager and some ready solutions for it,
like submit scripts or movie encode scripts, for example.

Since 2012 project code is on GitHub [https://github.com/CGRU/cgru].

Paper

There is some paper, but only in Russian.

Paper (rus) [https://cgru.info/paper_ru/index.html]

It is about render managers generally, Afanasy idea, why it was written, who is interested in.
If somebody going to translate it in English, please contact, it is really needed.
Paper has some funny shade, it is done not to bore people that are not vary familiar with the theme, may be with computers at all.
As practically 90% of people in auditorium do not really know where they are and why.

 Contacts

Contacts

	
	Forum

	https://forum.cgru.info (EN)

https://forus.cgru.info (RU)

	
	GitHub Issues

	https://github.com/CGRU/cgru/issues

Designed for code development questions only.

	
	RULES Online

	The simplest way. No registration needed.

https://rules.cgru.info/#/Ask_Questions_Here

	Mail box on Google: cgruafanasy

[image: ../_images/dr.strangelove.gif]

	
	Russian Telegram channel

	https://t.me/cgruafanasy

 Changes Log

Changes Log

If Afanasy network protocol changed, it became incompatible with old one.

	The first number in the version means some significant changes in the project.
Probably you should reconfigure Afanasy.

	The second number means major changes that caused compatibility lost.
You should upgrade all clients and server at once.

	The third number versions are fully compatible.
You can upgrade only one client or server for changes.

v3.3.1

2023.03.12

	Afanasy service can be configured to limit task post command running time.
Task post commands are used to generate thumbnails.
By default af_task_post_limit_sec config variable stands for it, and it is 16 seconds.
Later (on limit exceeded) task post command will be killed.

	Afanasy can be configured not to cut domain names from user and host names.
New parameters af_render_cut_domain_name and af_user_cut_domain_name added to control this.
The default behaviour is the same as before, domain names will be cut.

	Afanasy statistics database tables got new rows.
Job blocks got job serial. Tasks run got job serial, block and task ids.
See database schema.

	Nuke Afanasy Gizmo can set extra
environment
variables that will be added to task process.
You use it to store Nuke location and version.

	Houdini Afanasy ROP can set extra
environment
variables that will be added to task process.
You use it to store Houdini location and version.

	AfWatch can edit job block environment variables.

	AfWatch now uses open_folder_cmd config variable to open folders.

	Afanasy server will not allow to change a pool of a busy render.

	Afanasy server branches action added delete_done_jobs. You can delete all done jobs from branch from AfWatch.

	Afanasy jobs branch can be paused.

	Afanasy user can be paused.

	Server annoying error log removed on a running job deletion.

	Rules Python API started.

v3.3.0

2022.07.25

	AfRender can send to server GPU resources:
utilization, temperature, memory total and used.

Note

This feature is sponsored by SMF Animation Studio, LLC

For now, just NVIDIA is supported.

	New job block need parameters:
GPU Memory,
CPU Frequency,
CPU Cores and
CPU Cores*Frequency.

	AfWatch and WebGUI shows some summary info, when several jobs are selected.

	AfWatch got and “Administration” menu to switch to super user mode with password.

	AfWatch warning and error messages and super user mode label highlighted to attract more attention.
When selection is not allowed, nodes list displays a warning message.

	Now parser checks whether the task progress was changed.
Later server had to compare previous and new percentage value.
And this behaviour was build-in.
Now you can override it by parser.
A new progress_changed variable for it was added.
And by default, progress is changed if task produced any output.

	New task state flag Wait Dependencies appeared.
Now tasks that wait some other tasks will be marked with this flag.
Tasks with this flag are skipped during job solving.
So now task dependencies will not wait the last frame of unbroken sequence.

	Bugfixes:

	AfServer and job block with no task crash fixed.
The crash was very rare, another block with tasks should follow a block without tasks.

v3.2.2

2022.02.09

	AfServer JOB_CREATED event added.

	Afanasy config: Parameter of a string array type can be overridden by command arguments or environment by a string contains a comma separated items.

	AfWatch

	Task window uses mono-space font for task output and log.

	Scroll step size preferences option. Later scroll size was only by item height.

	Houdini Afanasy ROP:

	Pre and post submission scripts execution.

	Separate Mantra rendering: Generate IFD block parameters.

	Houdini Afanasy TOP:

	“Keep Job On Cancel Cook” option added. You can check tasks outputs, compare different jobs after cooking stop.

	Changed to work with Houdini 19 version, will not work with 18.5.

	Nuke: Submission and render scripts support rendering a movie.

	Afanasy new services and parsers added: shotgun, ftrack.

	Bugfixes:

	AfServer:

	Change running job owner or branch fixed.

	On start set WARNING tasks to READY.

	Fixed task progress sending to GUIs mixing task and block numbers.

	AfWatch: Skipped tasks does not affect job block average running timings.

	Keeper: Refresh when local render deleted now does not produce an error in server log.

	Houdini:

	USD ROP now can works like Alembic ROP. One render session for all frame range.

	MS Windows launch scripts fixed to work with 19 version.

	Afanasy ROP:

	Custom command mode block naming fix.

	Separate Mantra rendering Auto Tickets fixed.

v3.2.1

2021.08.19

	Houdini Afanasy TOP Scheduler.

	Houdini setup changed. Now HOUDINI_PATH=cgru/plugins/houdini and afanasy.otl moved to otls/afanasy.hda.

	Each not numeric task can have an own extra environment.

	Paths mapping is applied to Block and Task environment.

	AfWatch now understands appending new blocks/tasks to an existing job.

	AfWatch can restart error tasks of a specified block.

	AfWatch Preferences menu got Reset Windows Geometry item.

	AfWatch can hide branch jobs and pool renders.

	Pools got some operations that will be applied to all renders in it: ejects tasks, launch command, exit renders and delete renders.

	MS Windows release moved on MSVC 2019, Python 3.9.6 and Qt 5.15.2.

Warning

MS Windows 7 is no longer supported, as Python 3.9 dropped it.

	
	Bugfixes

	
	AfWatch jobs list right panel folders buttons refresh fix on a new job selection.

	AfWatch jobs list switching from admin mode, other users jobs appear fixed.

v3.2.0

2021.04.18

New Afanasy network protocol version.

	Such config parameters as
af_render_heartbeat_sec,
af_render_up_resources_period,
af_render_zombietime and
af_render_exit_no_task_time
moved to pool parameters:
heartbeat_sec,
resources_update_period,
zombie_time,
exit_no_task_time.
On change they will be dispatched to all pool renders.
This way you can tune farm “on-the-fly”. Parameter af_render_connection_lost_time removed.
Now render just uses the same zombie_time parameter as server for connection lost.

	Parsers do function takes arguments via dictionary.
I hope that is was the last time we needed to change all parsers classes on a function interface change.

	Parser takes resources string and can return resources string.
Takes host resources as JSON, that afrender gets for server and GUIs.
Can return any custom resources, for example peak memory usage or (and) triangles count.
Server stores this string in statistics database and dispatches to GUIs.

	RENDER_NO_TASK event
and pool no_task_event_time parameter.

	RENDER_OVERLOAD event
and pool overload_event_time parameter.

	AfWatch jobs thumbnails size buttons.

	Server HTTP configuration added.
Now it is more easy to make server to serve some custom or even several WebGUIs.

	Bugfixes

	AfWatch Work monitor allows modifications only in admin mode.

	AfWatch Users and Farm monitors allow selection and current item change only in admin mode.

	AfWatch Job Block operations fixed to work on MS Windows.

	AfWatch Job Tasks List window on open task progresses refreshing.

	AfWatch Jobs List hidden nodes mix on reopen / monitor type or change fixed.

v3.1.1

2021.01.31

	AfWatch job item can collapse blocks.
Useful for UI space economy, especially on jobs with a big blocks count.
In a View Options menu you can collapse/expand all jobs,
and set an option to collapse new jobs.

	Houdini submission ROP works with Python 3.
Now you can choose to download Houdini with internal Python 3.

v3.1.0

2020.10.05

New Afanasy network protocol version.

	Afanasy pool tickets got maximum hosts property.
This is mostly needed for licence hosts limits.
There is a common type of licensing where you can run multiple instances of software on same host, occupying only single license.

v3.0.0

2020.09.13

New Afanasy network protocol version.

	
	Pools

	Now renders are organized in pools hierarchy.
All farm (services, capacity, limits, …) settings are configured by pool properties.

Warning

You will loose your previous farm setup described in farm.json.

	
	Tickets

	Pools Job blocks got Tickets.
It is like named capacity.

You can set root pool NUKE:20 pool tickets to limit Nuke licenses on the entire farm.
You can set some pool MEM:64 host tickets to limit RAM.
And set corresponding tickets to your job blocks.

	Render node becomes Sick, when it produces errors only from different users.

	RENDER_SICK and RENDER_ZOMBIE events.

	AfWatch got side panel to manipulate nodes.

	AfWatch admin mode let you to mark task as DONE w/o SKIP state.

	Block got a server information string.
Now it used to store last started task host name.
GUIs show it.
Useful for a single task blocks, no need to open job to see what host your simulation running on.

	Try this task next.
You can ask server to solve some task(s) as soon as possible.
Also you can specify such tasks via Python API on a job submission.

	Each Afanasy node stores running services counts.
AfWatch shows user and branch items running services.

v2.3.1

2019.03.11

	
	Afanasy

	
	Linux packages moved on System D.

	Windows service.

	AfterFX submission improvements. More setting appeared.

	NVIDIA nvidia-smi Python custom resource class.

	
	RULES

	
	News, Bookmarks and Recent items display status.

	Incoming fresh News statuses update folders statuses.

	Scenes shots filtering mutes not found artists, flags and tags.

	Bookmarks folders.

	
	Bugfixes

	
	
	Afanasy:

	
	Blender submission fix.

	Redshift parser fix.

	Houdini distribute Alembic ROP fix.

	AfWatch any operation does not affect hidden items.

	AfWatch setting string parameter JSON value escape added, you can set annotation with quotes.

	AfRender custom resources meter Python classes fixed to work within Python 3.

	Multi-host task start and server hung fixed. This bug appeared in 2.3.0.

v2.3.0

2018.10.17

New Afanasy network protocol version.

	
	Afanasy:

	
	Generally new class Branch appeared.
Now jobs solving is going within branches hierarchy.
Branches can represent departments/projects/assets and you can vary their priorities.

	Job block/task command and files pattern frame replacement is processed in a Python service class.
Later it was coded in libafanasy and processed by afserver, and you could not alter it.
Now you can use custom frame patterns.
AfRender receives a pattern and frame settings (first, last, increment) instead of a ready command/files.
This is much more flexible.
For example, now in a Python service class we can check all numeric task files for existence and size.
And decide to skip task execution if all files are fine.

	Task progress change timeout job block parameter.

	Task minimum run time job block parameter.

	New user max_run_tasks_per_host and jobs_life_time default values are configurable.

	
	Some config parameters renamed:

	
	af_maxrunningtasks -> af_max_running_tasks

	filenamesizemax -> file_name_size_max

	
	Houdini submission:

	
	Job Branch, Wait Time and Task Minimum Run Time parameters added.

	
	RULES:

	
	Each playlist item has an own delete button.

	Shots export to table frames_num column added.

	
	Bugfixes:

	
	
	Afanasy:

	
	Server - Python API communication invalid JSON answer fixed:

	
	Server JSON answer will never contain extra A character after JSON object finish (latest }).

	Python API will never try to read JSON data over message size.

	Server JSON answer task_files fixed, now it escape file names.
Later when server was running on windows, \ slashes produced JSON syntax error.

	Server hung on incoming JSON with invalid syntax fixed.

v2.2.3

2017.11.02

	
	Afanasy:

	
	Server creates all needed threads for network IO at start.
Networking threads pool size is configurable.
Later it has to create a thread for each incoming connection.
Now server can handle bigger amount of clients, consumes less system resources for it.
Later on some systems afserver could even hung when clients count is more than about a hundred.
As system can fail to create 100 threads per second for a long time (have no time to free all thread resources every second).

	Linux server can be configured to use not-blocking network IO based on Linux EPOLL facility.
By default Linux will use the same blocking (threading) IO, as on other platforms.
Non-blocking IO consumes less system resources and can handle more connections at the same time.

	AfWatch (libafqt) switched to non-blocking network IO based on Qt Signal-Slot mechanism.
Now it works better (less hangs) with afserver that has a big total amount on clients.

	Farm setup allows new machines can be configured to register paused/nimby.
This can be useful for a just born machines to not to produce error tasks.
When a new afrender registers, but has not enough software installed yet.

	You can find for some string in the text in task output/log in AfWatch.

	Double click needed on a button to skip and restart task in AfWatch task window.
This can help to prevent unwanted task restart by a single occasional click.

	Previewcmd options added: Houdini Mplay and DJV open source sequence player.

	
	Houdini submission:

	
	Shorter names for afanasy temporary .hip files.

	Camera verification for Mantra submission.

	Support for Alembic submission with progress.

	Support for Wedge submission with block per wedge.

	
	Bugfixes:

	
	
	Afanasy:

	
	After server restart, reconnected tasks are not ignored by “Max Run Tasks Per Host” limit.

	Multi-host task start and server hung fixed.
This bug appeared in 2.2.1.

	MS Windows server tasks state storing fixed.
Later, after restart, it run done tasks again.
This bug appeared in 2.2.1.

	Server memory leak fixed.

	Houdini Current frame submission fixed.

v2.2.2

2017.05.21

	
	RULES:

	
	If status progress is 100% all its tasks are considered as done.

	
	Afanasy:

	
	Maya Redshift support.

	Parser updates: Fusion, Redshift, Arnold, Redline, Rsync.

	
	Bugfixes:

	
	
	Afanasy:

	
	MS Windows AfWatch and jpeg images (thumbnails) reading fixed.
Missing Qt5 dll added to the package release archive.

	AfServer on some Linux distributions can hung when clients number over 100.
Fixed - reduced default (configurable) afserver client thread stack size.

	Parser Error fixed.
Later on Parser Error, afrender can ignore its restart from afserver and task update/stop timeouts happen.

v2.2.1

2017.01.28

	Forum [http://forum.cgru.info/].

	Keeper shows machine memory usage in a system tray icon.

	
	Afanasy:

	
	Isotropix Clarisse iFX support.

	AfServer solves jobs by running tasks total capacity (by default), not just by running tasks count.

	Each new job acquires an unique serial number. You can get jobs from server by serial.

	Linux distributives that has a native Python 3, Qt 5 switched on these new libs version.

	Qt 4 and Python 2 are still supported. There is no plan to discontinue this support for the near feature.

	
	RULES:

	
	Artists got automatic bookmarks on assigned shots.

	
	Bugfixes:

	
	
	Afanasy:

	
	MS Windows AfServer WebGUI hosting fixed.

	Blender parser fixed to work with new versions (previous still supported).

	VRay parser fixed to work with new versions (previous still supported).

v2.2.0

2016.11.23

New Afanasy network protocol version.

	
	Afanasy:

	
	On server restart it reconnects running renders tasks. New task “WaitForReconnect” state.

	New job flags designed for “Maintenance” added:
maintenance, ignorenimby and ignorepaused.
Now you can run some command once on each render (even if it is “Nimby”).
For example you can install software this way.

	GUI got “task” window. One place to view and manipulate job block task.

	New render “Paused” state.
It is like “Nimby” but without “Auto Nimby”.
Only admins can change this state.
Designed to disable render permanently while “Auto Nimby” is enabled.

	Parsers got “tagHTML” function.
It designed to mark task output for AfWatch GUI.
For example replace terminal escape sequences, highlight errors.

	AfWatch GUI nodes list has a second sorting parameter.

	Houdini submission:

	Added minimum memory, PPA settings, render temp HIP and wedges support.

	Separate Render deletes ROP files not after render, but on job deletion (you can re-render w/o re-generation).

	Distributed simulations support.

	Job Block environment parameter added. Render can run task process with some extra environment.

	You can quickly override any config parameter w/o any file changing.

	You can enable/disable services by a regular expression.
It is useful when you have several houdini_.* types services.

	JOB_DELETED event added.

	
	RULES:

	
	Scenes/Shots asset: Export shots to HTML table.
You save/send this table. Print to PDF. Open in Exel/Word.

	Files view: You can colorize and annotate any item.

	Walk: Calculates and stores disk usage along with total files size.

	
	Bugfixes:

	
	
	Afanasy:

	
	AfServer store folders removal fixed on some modern file systems.

	AfServer on windows thumbnails serving fixed.

	AfServer now reset depend state on a job block if it depend mask changes on empty string.

	AfServer does not send job changed event every cycle if a job block has depend mask.

	Mac OS X: AfRender memory resources detection fixed.

	AfRender get CPU frequency each time it measures resources, and stores its maximum.
Now most machines can change CPU frequency depending on load.

v2.1.0

2016.04.29

New Afanasy network protocol version

	
	Afanasy:

	
	Clients does not listen any port (afrender and afwatch).
Server does not connects to clients itself.
This means that no local network needed any more.
Also it increases maximum clients quantity.

	MS Windows build now compiled with MSVC 2015.
You may needed to install
Redistributable 2015 x64 [https://www.microsoft.com/en-us/download/details.aspx?id=48145]
package to work, if you have some old updated Windows OS.
It also it has Python 3.4.4 and Qt 5.6.0 versions.

	WebGUI can listen job and task outputs.

	Job got report report.
It is some important info to show in GUI that can be returned from a task process parser.

	Job Block got skipexistingfiles and checkrenderedfiles flags.

	Service and parser can write to task log.
This is useful when you decide to skip a task or mark it as an error from service or parser
to explain why you did it.

	You can ask render to execute custom command and exit (or not) after.

	Multi-host task can ignore slave host missing.
To control this, slavelostignore job block flag was added.

	Wake-On-LAN: Sleep and wake commands are constructed in ‘wakeonlan’ Python service class.

	
	RULES:

	
	File buffer to move folders/files.

	
	Bugfixes:

	
	
	Afanasy:

	
	AfWatch: Turn off listening job/task fixed.

v2.0.8

2015.12.06

	
	Afanasy:

	
	AfWatch desktop notifications.

	Server waits client have closed network connection first.
This way there is no TCP socket TIME_WAIT state on server.
It can be needed for a big amount of clients.

	
	RULES:

	
	Shot tasks price.

	Auxiliary folders.

	User last entries record: IP, URL and time.

	
	Bugfixes:

	
	
	Afanasy:

	
	Thumbnails double generation fixed.

v2.0.7

2015.10.23

	
	Keeper:

	
	Show and change local render user name.

	
	Afanasy:

	
	Fusion integration.

	Natron integration.

	Job has folders string map parameter. It can be user in GUIs to open some location.

	Statistics folders table and graph.

	
	RULES:

	
	Player link to the current frame.

v2.0.6

2015.07.17

	
	RULES:

	
	Dailies with sound.

	Deploy shot renaming prefix and find/replace regexp.

	
	Afanasy:

	
	Auto NIMBY and Auto Free now can depend on MEM, SWAP, HDD and Network usage.

	
	Bugfixes:

	
	
	Afanasy:

	
	AfWatch can reset (set to an empty string) job block mask (host, depend).

	Python parser class appendFile function fixed (old style parsers lost thumbnails in 2.0.5).

	MacOSX compilation fixed (2.0.5 has compilation errors).

v2.0.5

2015.06.30

	
	RULES:

	
	Upload rules.
You can describe a rules to upload .mov files in a shot dailies folder and .zip files in results folder.
So no artist can upload everything just in a shot, and there is no need to know where shot dailies are located.
And a news will be created on upload.

	Edit body and tasks of a several selected shots.

	Tasks has prices.

	You can add scene(s) selected shots to playlist.

	
	Afanasy:

	
	Preview Pending Approval PPA flag.
Now job can render just tasks that described with a sequential parameter (every 10 frame, for example).
Then job falls in a PPA state and stops to solve tasks.
Artist can check that every 10 frame and unset PPA to continue or delete a job.

	Sequential behavior slightly changed.
Now it renders first and last frames at first, then sequential frames.

	AfStarter and afjob.py supports Natron.

	AfRender can generate thumbnails
while task process is still running.
Was designed and now used in dailies creation.

	
	Bugfixes:

	
	
	Afanasy:

	
	User can change his job priority above the default value.

	Afwatch can show hidden node on some parameter change.

	Set farm auto nimby parameters to zero (to disable them) and reload farm ‘on-the-fly’ (afcmd fload) now works.

v2.0.4

2015.02.26

	
	RULES:

	
	Permissions to edit tasks, body, playlist, assign artists.

	
	Afanasy:

	
	Job block frame sequential new parameter.

	AfWatch can edit custom data for job and user.

	You can get farm setup from afserver via json.

	Server can save json object.
This can be useful to edit config or farm setup.

	WebGUI major changes, but not finished, in progress.
New idea is less RMB menus.
Actions are buttons on the left control panel,
Parameters manipulation is on the right panel.

	
	Bugfixes:

	
	
	Afanasy:

	
	Events service fixed (was broken in 2.0.3).

	Server memory leak fixed. It was small and rare, probably you did not noticed it.

v2.0.3

2014.11.09

	
	Blender:

	
	Blender plugin was completely rewritten.
Now there is a CGRU Tools Addon and Afanasy is a part of it.
Afanasy now not a Blender render engine.

	
	RULES:

	
	Create Nuke scene in a shot using template.
Scene will have good project settings, sources and results (Read and Write nodes).

	News display filter.
You can show/hide/delete specific news (dailies, reports, status, …).
Filter news by a project.

	Results invalid naming highlighting and tool-tip.

	Status edit: artists are combined by roles.

	User states: admin can allow user to change his password,
make user not-an-artist to hide him from status edit.

	Player: show images while loading.

	
	Afanasy:

	
	Afrender calls parser function on task finished in any case, even if there is no new output.
This may be needed if want to perform some finalizing actions in your custom parser.

	Service python class has a function to check task process exit status value.
By default (in service.py) zero is considered as a success, any other as an error.
But now you can override this function in you custom service.

	Web GUI supports afrender custom resources monitor.

	
	Bugfixes:

	
	
	Afanasy:

	
	Paths map (mixed os farm) and non-ascii character(s) fixed.
Now you can have national characters in paths,
but it is not recommended in any case.

v2.0.2

2014.08.19

	
	RULES:

	
	Shot tasks and reports statistics.

	Create and extract archives via Afanasy farm.

	Put files on FTP via Afanasy farm.

	
	Afanasy:

	
	GUI: Job item ETA.

	
	Server:

	
	On a new job, server returns its ID.

	Tasks solving speed limit configurable parameter.

	Events: Server sends the entire job JSON object to render.
You can use any job parameter in an event Python service class.

	
	Movie Maker (RULES Convert and Dailies):

	
	Apple ProRes422 and ProRes444 10-bit codecs presets.

	
	Bugfixes:

	
	
	Afanasy:

	
	Cmd: Send json job and an error message in any case fixed.

	
	Watch:

	
	Listen task/job output fixed.

	Zero thumbnails quantity preference and crush fixed.

	Render: Task output maximum size and output middle truncation invalid characters.

	Server: Task that reached maximum running time limit takes ERR state.

v2.0.1

2014.04.10

	RULES: Convert multiply selected movies or sequences to other movies or sequences.
You can change codec, fps, resolution and
convert DPX-es to JPEG-s with a specified colorspace and quality, for example.
Such calculations will be processed on a farm via Afanasy.

	Movie Maker: AV conversion tool is configurable.
You can set a custom command or executable path.
The default is ffmpeg.
Some Linux distributions switched from ffmpeg to avconv. For now, they are fully compatible.

	
	Afanasy JSON protocol:

	
	Jobs list can be generated providing to server an array of user names.

	Server configuration and farm setup can be reloaded via JSON message.

	
	Bugfixes:

	
	Movie Maker and RULES thumbnails: EXR and DPX colorspace problem is solved.
You need at least ImageMagick >= 6.8.8-8 version for it.
EXR bug was in CGRU, DPX bug was in ImageMagick.

	Afanasy Web GUI: Sorting and filtering parameters storing.

	Afanasy Server: Several bugs that can cause hang fixed.
You should definitely switch to this version as soon as possible.
It is fully compatible with 2.0.0 (you can just replace afserver binary only).

v2.0.0

2014.03.01

	
	No SQL

	Afanasy server stores state in json files in its temporary folder.
Now SQL stands for statistics only.
If you does not need statistics you can not to setup SQL at all (or setup it later).

Warning

Server state will not be stored switching to this version.
You will loose all jobs, renders and users settings if any.

So now on MS Windows OS, Afanasy server does not needs any installation/configuration procedures to work.
Just run (double click) cgru/start/AFANASY/_afserver.cmd.
Or drag a link to Startup menu for auto launch at logon.

	
	Authentication

	Afanasy json protocol has an authentication mechanism.
It uses Digest Access Authentication [http://en.wikipedia.org/wiki/Digest_access_authentication] method.
IP Trust mask allows to skip authentication.
By default mask allows any IP, and if you did not configured it, you should not notice authentication at all.
Binary protocol does not have authentication mechanism.
If IP does not match trust mask and message uses binary protocol (not json) - message will be ignored.
This was designed to use Web GUI not from a local network.
Note, that it is only authentication mechanism and not data encryption.
But passwords are not sent in a plain text, and even are not stored in a plain text (see Digest description).

	
	Python service class got doPost method.

	You can do some post process there.
If post command requires enough calculation, you can return a list of commands (strings) from this function.
In this case all that commands will be executed in child subprocesses and output will attached to task output.

	
	Thumbnails

	If task (block) has files parameter or parser finds images thumbnail will be generated.
Thumbnails are generated by afrender.
Python service doPost function returns commands for it.
This commands can be configured.
Thumbnail files binary data is send by afrender to afserver along with task output.
Server stores all files that afrender sends on task finish.
AfWatch and Web GUI can show thumbnails.
You can get tasks thumbnails from afserver by HTTP GET method.
Python parser class can find images in task output.
Python service class can ask parsed images for thumbnails generation.

	
	Python parser class got mode argument in parse function.

	This argument stands for task subprocess status.
For example, now parser knows whether the task is running or finished and how it was finished.
Now if a task has finished with success you can set an error if output does not contain some required result.

	
	All plugins from cgru/afanasy/plugins/ moved to cgru/plugins/.

	That old plugins location came from SVN age, when Afanasy has branches, tags, trunk. Within Git it is not needed.
So now there is no mess where to put or find files in cgru/plugins/ or cgru/afanasy/plugins.

	You can add new user via JSON. An example is located in cgru/examples/json/.

	WindowsMustDie function configures via general configure system (json files).
So there is no a special windowsmustdie.txt file now.

	Python service class now instance parser class itself.
So you can exchange information between service and parser classes.

	Python API Block and Task classes setFiles method takes an array of string.
And not a single string where several files are separated with ‘;’.
You should fix your custom submission scripts if any.

	CGRU Home folder on MS Windows OS moved to %APPDATA%/cgru/.
It is used to keep user personal configuration.
Previously it was in %HOMEPATH%/.cgru/ where %HOMEPATH% is usually user Documents folder.

	Web GUI is not “beta”.
It is a full functional GUI for Afanasy, that can replace AfWatch (Qt).

	RULES is not “beta”.
But there is still the lack of documentation and lots of things to do.

	There is no temporary users.
Any (each) user in stored in its json file.
No af_user_zombietime variable - time for temporary user to have no jobs to be deleted.
(Temporary was a user that was not stored in SQL database.)

	
	Maya

	
	No overriding scripts.

	No auto scripts sourcing.

	No plugins auto load.

	No CGRU main menu auto launch.

Sow now CGRU in Maya is just a set of stand-alone scripts,
and it does not modify any native Maya interface and workflow.
This means the lost of some features:

	No autosave manager.

	No auto project seek.

	No Outliner and Channels menus custom items.

Since Maya 2014 CGRU main menu appears on load cgru.mll plugin.
For auto load, enable it in plugins manager window.
Or you can source cgru.mel from a shelf or userSetup.mel.

	
	Movie Maker

	ffmpeg and convert binaries are removed from Linux packages.
There are two reasons for it.
Modern Linux distributions has various dependences to build and install them,
so it begin harder and harder to support them in CGRU.
Also modern Linux distributions already has enough high versions of this products to support EXR and H264.
If you need to some special version of this binaries, you can to download and build it yourself,
there is no problems in Linux to compile them manually.

Debian based packages will have ffmpeg and imagemagick (convert) dependences.
As all such distributions has them in native repositories (they are usually enough big).

RPM based packages will not have only imagemagick dependency,
as for ffmpeg you need to add some extra repository (native repositories are usually small).
The exception is AltLinux.

MS Windows release will continue to contain this executables.

	AfTalk Afanasy chat client was removed from the project.

	
	Bugfixes:

	
	Server hung when a job with no blocks sent.

	Change job bock (tasks) command (working folder) change from watch GUI.

	Post command ignore when job json file send with afcmd.

	Change any user parameter resets jobs solving method to ‘order’.

v1.7.0

2013.06.05

New Afanasy network protocol version.

	WEB GUI (beta).

	
	RULES (beta).

	It has begun!

	Forum (beta).
Based on RULES web engine.

	Parser can return running task activity string parameter.
For example Nuke can notify which of stereo views is rendering now.
Movie Maker notify whether an encoding is started.
Activity string is shown by GUI in job tasks list window for each task item.

	Render client Nimby can be set to free if computer is idle for some time.
You can configure it in farm setup.
Machine considered as idle if CPU busy percentage is less than idle_cpu value.
It is useful for render on workstations that artists left.

	Render client Nimby can be turned on if computer CPU is busy for some time and has no Afanasy task.
You can configure it in farm setup.
Machine considered as busy if CPU busy percentage greater than busy_cpu value.

	Afanasy server sends to GUI tasks percentage with renders list.
GUI renders list items show running tasks percentage.

	New system job block - events.
New service - events.
Afanasy server can generate events, on job error, for example.
Events are pushed to system job as tasks for events block.
Render farm can process events, send email notifications for example.

	Each afnode has a custom data.
Afanasy server sends this data to render to service class with a task.
In Python service class you can do with this data what you want.
For example user email parameter and events settings are stored in custom data via JSON.

	You can restart all job running tasks from GUI menuitem.

	Archived binaries Python version is 3.3.2.

	
	Bugfixes:

	
	AfWatch: Several blocks selection for some action works.

v1.6.12

2013.03.22

	Afanasy configuration now has parameters to control user ability to change priority:
af_perm_user_mod_his_priority and af_perm_user_mod_job_priority.
By default user can change his own priority and his jobs priority.
Set this parameters to false< and only admin will be allowed to change priorities.

	Movie Maker: Apple ProRes codec presets.

	Tested with Nuke 7 - works fine.

	
	Bugfixes:

	
	Movie Maker: H264 (ffmpeg-libx264) uses 420 pixel format instead of 444 to work on most players.

	Nuke Submission: Fixed to render Write-nodes inside group.

	Nuke Render Script: Fixed to render different views in different folders.

v1.6.11

2013.02.15

	Maya users should look at meTools for Afanasy [http://meshstudio.blogspot.ru/2013/01/metools-for-afanasy.html]. And use it.

	Nuke and Paths Map: Filename filter can be added to always have valid paths on any OS in the same script.
You can configure to add or not to add it - not to break you potential in-house filters.

	Tested on Windows 8 - works fine.

	
	Bugfixes:

	
	Nuke Submission: Negative frame range fixed.

	Nuke Render Script: Fixed to render several views in one file (you can write stereo in a singe EXR).

	AfStarter Blender: Now does not ignore output images parameter.

	Paths Map: Now works with big files thousands times faster.

	AfServer: Enable/Disable service fixed (was broken in last versions while json protocol switch).

	PyQt: Open file dialog fixed to work with old PyQt versions (4.6.2 - CentOS 6).

v1.6.10

2012.12.21

	
	Bugfixes:

	
	AfServer: Creating temp folder it tries to create all parent folders.

	Keeper: Set Afanasy server fixed.

	World: No the end, fixed.

v1.6.9

2012.12.19

	Cinema4D: Submission switched from afjob.py command to Afanasy Python API.
So there are no issues with subprocess.Popen any more.
Same code works fine on all platforms.

	
	Bugfixes:

	
	AfStarter: Output images browse file button fixed.

	Cinema4D: Render scene with spaces in path fixed.

	Keeper: Software setup fixed (select executable dialog).

v1.6.8

2012.12.10

	Automatic Wake-On-LAN.

	
	Bugfixes:

	
	Nuke: It does not really use render script when it should not (when there is no paths map or temporary images).

v1.6.7

2012.12.03

	All CGRU config files moved to JSON.
It refers to any Afanasy configuration, farm setup, paths map.
XML is removed from the project at all.
Any XML config file will not works.
AfWatch GUI turning will be reset.

Important

You should reconfigure Afanasy.

	Afanasy user ‘home’ configuration files moved to HOME/.cgru from HOME/.afanasy.

	One config file can include another file(s).
Specify a files to be included in “include” string array.
All include files will be included after all file will be read (not like include directive in most common program languages).
This is done to override file contents.
Any next occurrence of a variable with the same name will override previous value.

	Config file can have OS specific section.
So you can setup different OS-es configs in the same file.

	Paths map setup moved to common config files.
And you can setup paths map for all OS-es in the same file.

	Some general config parameters, as time format, maximum file name length, command shell, preview commands,
moved from Afanasy specific config to global CGRU config.
As they can be used later by other CGRU tools.

	Afanasy on start-up reads CGRU config file and does not tries to find some specific config itself.
CGRU config file simple includes Afanasy specific config file.
All Afanasy specific parameters has af_ prefix now.

v1.6.6

2012.09.26

	All Python applications with GUI in CGRU can use and PySide and PyQt.
At first PySide will be tried to import and than PyQt.
It means that if you have PySide installed it will be used.
PySide has LGPL license, PyQt - only GPL.
So now all components in CGRU has LGPL license or similar.

	New Linux package afanasy-qtgui appeared.
Needed only to remove libqt dependence from afanasy-render and afanasy-server packages
(to not to install huge Qt on render nodes).

	
	Bugfixes:

	
	afcmd uadd works fine (is was broken in v1.6.5 - it added users that can’t run any tasks)

v1.6.5

2012.09.04

	Movie Maker can fake dailies date and time.

	Python Parser class can consider that task is already done and ask render to stop a task.
AfRender sends to server that it was finished with a success.

	
	Bugfixes:

	
	Movie Maker open/save parameters and non ASCII characters bug fixed, all operations uses UTF-8 encoding.

	AfStarter and negative frame values (actually the bug was in afjob.py).

	Negative frame values and numeric commands with padding (afserver generates commands, so it should be restarted).

v1.6.4

2012.06.26

	CGRU now has a domain https://cgru.info.
Soon documentation from sourceforge.net will be removed.
If you have RSS subscribed, you should resubscribe on http://cgru.info/doc/cgru_rss_feed.xml

	
	Bugfixes:

	
	Python API af.Block.setHostsMask and af.Block.setHostsMaskExclude
methods are back after occasional deletion when switching to JSON.

	AfStarter maya_mental submission set verbose level for task progress parsing, afjob.py changed for it.

	AfStarter dialog GUI dialog bug fixed: first_frame <= last_frame check works correctly.

	Nuke CGRU menu open/save scene through paths map fixed.

v1.6.3

2012.05.07

	Nuke render and submission scripts options added to skip paths map and render to temporary image stages.
Render hosts (farm) should be updated too to recognize such options, as not only submission script changed.

	
	Bugfixes:

	
	Nuke render just one frame fixed.

	Depend sub task and depended block frames per task > 1 fixed.

v1.6.2

2012.04.23

	
	API is based on JSON now.

	Python API is the same but no binary module needed, it communicates with server itself by JSON build-in module.
(All Python API is written on Python language, not on Python C API.)
You can communicate with Afanasy server within any language/script that can create JSON structures.
(No libafanasy needed to send and get data, all possible linking problems are in the past.)

JSON protocol is not finished. Finished only job structure - to remove python binary module dependence to send a job.

	
	Bugfixes:

	
	AfWatch shows tasks with no service icon.

	AfWatch filtering and sorting nodes when new nodes created and old changed fixed.

	Houdini render script loads scene within try-catch to pass warning exception.

	Nuke dailies node can handle tcl expressions, it uses getEvaluatedValue() instead of value().

	Nuke render script changes root.project_directory according to OS paths map (for mixed OS-es farm rendering).

v1.6.1

2012.03.28

	Tasks can be solved in a not-sequential manner.

For example 1-10: 0 9 5 2 7 1 3 6 8 4

This can be needed to catch some error earlier and to calculate average running time more accurate.

	You can hide jobs or renders in AfWatch by some parameter.
Also you can show only hidden nodes.
And a new “hidden” parameter was added to every node (job, render) just to hide (and store hidden state).

	
	Bugfixes:

	
	AfWatch can preview tasks of a not-numeric blocks in a task information window (by double click).
This is a main reason of this release.

v1.6.0

2012.03.22

New Afanasy network protocol version.

	New parameter added to configuration cmd_shell.
Render will launch tasks commands with it. Default values are:
- UNIX: /bin/bash -c
- MS Windows: cmd.exe /c

	Administrator (super users) can change job owner.
It can be performed by AfWatch GUI and afcmd CLI.

	You can enable/disable render service via afcmd (CLI).

	AfWatch GUI styles available.
You can change, copy, modify them, create your own.
You can set sounds to playback on some events (Job added, finished or got an error).

	Renders list has an ability to change items size.

	No Qt library in Afanasy render client.
So Qt is used for GUI only now.

	Magic Number to filter connections.

	Afanasy server is available for MS Windows OS.

	GitHub https://github.com/cgru CGRU project started.

	Afanasy branches removed from repository.
Use git for branching.
As there is no need in branches in project subdirectories structure.

	
	Bugfixes:

	
	Server bug fixed.
It could hung on job submission.
It was a very rare deadlock bug.
I never managed to catch it for 4 years.

	Keeper hung on new network protocol version fixed.

v1.5.5

2012.02.12

	Cinema 4D support.

	Maya Bins release removed.
Use archive for MS Windows for or Linux to get plugins for Maya.

	Nuke dailies gizmo can encode only (skip convert stage).

	Movie Maker allow user to specify container to encode movie to (mov, avi, …), through GUI dialog or command line argument.

	Movie Maker can save and load settings, keeps recent jobs options.

	Nuke submit and render scripts can handle write node file expressions.

	Python Class Block - added following functions: setErrorsAvoidHost, setErrorsForgiveTime, setErrorsRetries, setErrorsTaskSameHost.

	Afanasy stand-alone starter has an ability to add some custom arguments to command.

	Server has an acceptable IP Addresses Mask.
Connections form addresses not matching specified masks will be ignored by server.

	User can set jobs solving method to parallel.

	Afanasy now supports only PostgreSQL database engine.
QtSql library replaced with native PostgreSQL libpq in libafsql module.
So there is no Qt in afserver and afcmd applications (as later Qt was removed from libafanasy).
Do not forget to update you server database connection settings, if you override defaults.

	
	Bugfixes:

	
	Afanasy Starter error message in console fixed, sending a job and with Python 2.x
(Fedora Linux raises a warning in system tray in this case).

	Paths map works in lower case mode on windows and only in client -> server direction
So you can use paths with uppercase letters with UNIX clients and MS Windows.

v1.5.4

2011.12.22

	AltLinux [http://www.altlinux.ru] RPM packages support.

	“Nimby” schedule improved.
Now if time begin > time end it assumes that time end is tomorrow.
So now you can set for example for Monday that time begin is 14:00 and time end is 1:00, and it makes render free at Tuesday 1:00.

	Afanasy stand-alone starter has an ability customize command, preview images and OS needed for render.

	Blender Cycles render engine support.

	Windows version switched on MSVC 10 SP 1.

	Release archives switched on Qt 4.8.0.

	
	Bugfixes:

	
	Error messages in standard output fixed opening Movie Maker and Afanasy Starter dialogs.

	Afanasy render and server Linux packages post install scripts fixed.
On some systems they were unable to create render user, if it does not exist.

v1.5.3

2011.12.05

	
	Bugfixes:

	
	Home configuration folders and files permissions. Now they writable to all.

v1.5.2

2011.12.02

	Movie Maker can decode movie to sequence and add sound to movie from an audio or another movie file with audio.

	Keeper tray icon displays Afanasy local render client status.

	
	Bugfixes:

	
	Keeper AFANASY client operation local host name bug fixed.
Bug was, for example, if you are setting NIMBY on “c1” machine,
it will be set to all computers with name starts with “c1”: “c10”,”c11”,”c19” …

	Movie Maker fixed to work with a sequence without padding specified (“%d” or single “#” character).

	Houdini submission fixed. Afanasy ROP got a check for a null connection.
Full path to ROP is used. You can to submit ROPs placed anywhere in a scene, not only from “/out/”.

v1.5.1

2011.11.14

	Keeper - CGRU applications managing program.

	Afanasy Starter - Standalone dialog to submit jobs to Afanasy.

	Adobe After Effects support.

	Linux packages structure simplified. Some of them removed.

	Server farm setup clearservces directive.

	Movie Maker input images and output movie pixel aspect and auto input aspect. Custom aspect cacher.

	Scan Scan input images and output movie pixel aspect and auto input aspect.
Search path include and exclude patterns.
Search files older than some date option. Place result relative to the sequence.

	Python 3 full support.
You can build all Afanasy application with Python 3,
construct and submit jobs,
write services and parsers for render clients.

	Release for MS Windows uses Python 3.
It provided with CGRU.
You don’t need to install and configure Python and PyQt on MS Windows.
On Linux distributions native python version is used and you should to install native PyQt.

	
	Bugfixes:

	
	SoftImage submit a scene with a spaces in file path.

	Scan Scan does not try to create a movie just from one file with digits in a filename like a sequence.

	When block (job) errors avoid host parameter is zero, block (job) does not avoiding any hosts.

	Mac OS X Afanasy server with client connection error fixed, render client resources collection improvements.

	Nuke submission frame increment parameter not ignored any more.

v1.5.0

2011.08.29

New Afanasy network protocol version.

	Houdini submission improvements.
You can connect several Afanasy and other ROP nodes together to describe a complex job with dependencies between ROPs.

	Block tasks can depend on other block sub-task progress.

	New job parameter Maximum running tasks per host.
The same parameter was added to job block.

	You can override render Max Tasks parameter directly from Watch in super user mode.

	New numeric pattern replacement rules.

Important

You should delete all jobs on server as their tasks commands can be invalid.

Jobs created by your custom submission scripts probably will generate invalid numeric tasks too.
But it is very simple to fix them.

You should to fix your custom submission scripts.

	Server stores renders IP and MAC addresses in a database.
So you can perform some operations with off-line renders after server restart (for example wake-on-lan).

	On start, server checks all database tables, and adds (removes) needed columns.

	All date/time and frame range parameters are 64bit integers.

	All numeric types has BIGINT SQL type.

	Numeric tasks block “frame increment” (or “by frame”) parameter plays role in tasks generation.
It means that blocks with this parameter grater then one will have less tasks number.

Important

You should delete all jobs on server before upgrade to this version.

	
	Bugfixes:

	
	Web Visor statistics average farm usage parameter does not ignore custom dates range.

v1.4.5

2011.05.26

	Server tries to reconnect to database when connection failed.

	Python 3 supported by Afanasy module.
You can construct and send jobs using Python 3.

	Blender 2.5 support.

	Web visor statistics favorite user and favorite service column. You can specify dates to for statistics information tables.

	Autodesk Max, Maya and XSI 2012 support.

	
	Bugfixes:

	
	Render “Division by zero” hung fixed.
It was very rare bug but you could catch it after machine sleep (was suspended with stored RAM and running afrender process).

Note

Only Chuck Norris can divide by zero.

v1.4.4

2011.05.07

	Wake-On-LAN

	Render client sends network interfaces information to server (MAC and IP addresses).

	Watch can request information message from server about render client.

	Watch items tool-tips improved.

	Watch renders custom commands can use selected node(s) IP address (“@IP@” string will be replaced with it).

	Watch can set job block parameter for all selected jobs.

	Web-Visor statistics displays total counters row, first record date, services tasks quantity.

	When render can’t import task service Python class, it imports services base class called “service”.

	Movie Maker temporary images format and quality settings, option to auto correct color space (Linear and Cineon to sRGB).

	Nuke client-server-client paths map interface in a Nuke CGRU main menu.

	
	Bugfixes:

	
	Render busy time calculation corrected (it affects GUI counter only).

	Watch job tasks list window title - job total percentage fixed.

	Watch job tasks list - block item tool-tip corrected.

	Nuke dailies node - job (block) custom capacity not ignored.

	Nuke afanasy node - “Wait whole frame range rendered” behavior corrected.

	Client does not try to lookup Afanasy server if direct IP literals specified.

	MS Windows 7 clients does not try to create Afanasy home folder if it is already exists.

	Server reload farm setup on-the-fly fixed when new host has less services.

	Server hung when user tries to restart or skip all job blocks (but not restart entire job menu item) fixed.

	Listen entire job when some tasks are already running corrected. They begin to sent output too.

	Fixed ffmpeg presets end-of-line for UNIX. On Linux they cause an error with Windows end-of-line.

v1.4.3

2011.04.11

	
	Bugfixes:

	
	Some server memory leaks fixed.

	Watch listen just one task bug fixed.

v1.4.2

2011.04.03

	Added afcmd commands to control jobs: start, stop, pause, restart.

	
	Bugfixes:

	
	Lots of errors in Afanasy server log if it was launched without database connection fixed.

	Watch jobs list stores sorting and filtering settings.

	Nuke parser bug fixed (error could appear in Nuke 6.2).

v1.4.1

2011.03.30

	Farm Services Limits to describe a number of software licenses.

	Movie Maker can draw a logo on an images sequence.

	Watch renders list can sort and filter renders addresses.

	System job commands queue can be cleared by restarting task.

	
	Technical:

	
	Default Python version is 2.7.1. Default Qt version is 4.7.2.

	XML parser moved from Qt to RapidXML [http://rapidxml.sourceforge.net].
No library needed, it is implemented by headers only.

	Regular expressions moved from Qt to POSIX [http://en.wikipedia.org/wiki/Regular_expression],
they are almost the same. No library needed. They are in C standard, already realized in GCC and MSVC>=2008SP1.

	No Qt needed for libafanasy and so for libafapi and libpyaf too.
No errors can happen importing Python module in other software using Qt.

	Windows version moved to static Qt libraries. No errors can happen with various Qt “dll”s in PATH.

	If parsing is no needed, parser should have an empty string name.
Render do not tries to import parser module with an empty name, no error happen.

	
	Bugfixes:

	
	Nuke render script: A try to delete moved temporary image removed.

	Listen job and task output connection error fixed.

	Numeric command frame(s) replacement bug fixed.
Now it replaces any number of %04d patterns with start and end frame in a cycle.
(The bug appears for example on a composite commands: “cmd1 && cmd2” or “cmd1; cmd2”.
And when one task has several files for preview.)

	Maya Auto Save Manager history backup filename from date and time construct on MS Windows bug fixed.

v1.4.0

2011.02.20

New Afanasy network protocol version. New Afanasy database schema.

	Errors forgive time for job tasks block
and for user.
It is a time form last host error to exclude it from error hosts list.

	
	System job

	Now job (and block) post commands are executed on a render farm by a special system job.
Your farm hosts must have “system” service to execute job post commands (remove rendered scenes).
afcmd db_sysjobdel deletes system job from database.
Will be needed if system job will have too much changes with new Afanasy version.

	Nuke dailies gizmo can be connected to Read node.

	Render views list can be customized.

	Job Life Time parameter added, for automatic jobs deletion after some time.

	
	WindowsMustDie

	windows names list can be defined in several files, matched windowsmustdie*.txt mask.

	User can sort jobs in Watch.

	Server does not store deleted jobs logs and tasks outputs.

	Release bin_pyaf removed. Modules for various Python versions are in every release now.

	Release svn added. It is an export of a repository.

	
	Bugfixes:

	
	Nuke afanasy gizmo: If it creates output folder, it creates recursive all needed folders.

	Watch job tasks list: Block item error hosts counters corrected.

	Server stores job order in user list in database, so on server restart user jobs list order restored.

	When parser on render finds an error, and than rapidly finds a warning, error status may be lost.

v1.3.1

2010.12.14

	Movie Maker output file naming customizable rules.
This rules works for Nuke dailies node too.

	Server Farm Setup changed.
Now host get setup form every matched pattern.
And in each pattern you can precise host settings.

	Render reboot and shutdown commands can be configured.

	
	Bugfixes:

	
	Watch job tasks window: Task item: Task host name string may overlap task name strings if this strings are long enough.

v1.3.0

2010.12.06

New Afanasy network protocol version. New Afanasy database schema.

	AfWatch shows services icons, it is common programs icons for users to recognize jobs type.

	Every Afanasy client has compiled revision number, startup version string and sends them to server.
Most dialogues in CGRU show version, Afanasy GUI also shows clients build revision.

	Nuke dailies node to generate movies locally or on Afanasy farm.

	movgen service added. It will be used for movies generation: annotate frames, encode, make dailies.

	
	Bugfixes:

	
	ScanScan codecs presets search folder.

	SoftImage VariRender changes output folder name for every Framebuffer if folder is specified.

	Houdini mantra filter (af_separate_render ROP) does not filter null images now (shadows for example).

v1.2.4

2010.11.01

	3D Studio MAX submit to Afanasy scripts.
MAX Afanasy service and parser.

	Watch can ask and launch a custom command with render items and has more sort&filter parameters.

	Movie Maker stereo mode, DNxHD codec ffmpeg preset and Utf-8 full support.

	Linear float EXR and logarithm DPX to sRGB conversion bug fixed.

	H264 ffmpeg preset updated: good size&quality and frame navigation on MS Windows QuickTime player.

	Nuke stereo render views in different folders bug fixed.

v1.2.3

2010.08.18

	Houdini parsers total percentage calculation bug fixed.

v1.2.2

2010.08.17

	Movie Maker works with folders with spaces.

	
	MS Windows:

	
	Afanasy Render prefix commands with cmd.exe /c.

	Afrender kills all child tasks in any case.
(There was still some cases when it did not do it. Warning! QtCore4.dll patched, do not use it.)

	Afrender measures network and disk traffic.

	Afrender MS Windows version has the same functionality as Linux version.

	Package “afanasy-examples” removed. All examples are in “cgru” package.

v1.2.1

2010.08.06

	Afanasy server database communication bug fixed.

v1.2.0

2010.08.02

New Afanasy network protocol version. New Afanasy database schema.

	Afanasy Python Custom Resources Meter.
You can measure any resource by writing you Python resource meter class.

	Afanasy Python Parsers has a new functionality.
A parser can produce warning to notify user, error to stop task with error,
bad result to finish task like with bad exit status (with error in any way).

	Afanasy render client Windows Must Die function.
It finds and kills windows with specified names.
When process crashes, MS Windows can raise a window with apologizes.
This can hang process until someone closes the window.
(AfRender periodically sends WM_CLOSE signal to windows listed in special file.)

	Houdini Separate Render
ROP to separate Mantra ROP render process on ‘ifd’ files generation and ‘mantra’ command render.
It can also split one frame into tiles and render them simultaneous,
clean ‘ifd’ files, clean tiles and render an image in local temporary folder,
and after successful render copy it to network location
(it can save network traffic, as host do not often write small portions of an image during calculations).

	Block Frames Per Task parameter can be negative.
Needed for sub-frame dependency.

	Afanasy has an ability to map paths.
You can setup farm with various platforms clients.
Submit jobs on Windows or Linux (MacOSX) to render and on Windows and on Linux (MacOSX) clients.
Every client can have individual a paths map file to translate paths to server and from server.

	Movie Maker works on MS Windows.
Linux releases has ffmpeg binary compiled with x264 library to encode ‘H.264’ codec.
Windows users need to install ImageMagick [http://www.imagemagick.org], which contains ‘ffmpeg’ with ‘x264’.

	SoftImage XSI submit to Afanasy scripts.
XSI Afanasy service and parser.

	Lots of bug-fixes for MS Windows platform. Windows version can be called ‘beta’.

v1.1.0

2010.05.09

New Afanasy network protocol version.

	Afanasy supports IPv6.
Server needs to support new protocol, as it stores client addresses,
and do not ask name server at every connect (most managers do, alfred too).

	Nuke render script to render images locally in temporary folder and copy completely rendered image
(it can reduce network traffic).

	Nuke render network: ‘afanasy’ nodes can be connected to describe ‘Write’ nodes dependency.

	Movie Maker Dialog and command line utility to make movie file from image sequence on Linux.

	RPM build scripts (tested on openSUSE, Fedora, CentOS).

	Windows Afanasy GUI applications does not open terminal.

	Maya 2010 and 2011 support.

	fbx2clip utility removed.

v1.0.0

2009.12.21

	New project structure.
Afanasy source code repository contains ‘tags’, ‘branches’ and ‘trunk’.

	CGRU has ‘deb’ packages build scripts (for Debian and Ubuntu Linux).

v2009.11.12

	Afanasy project building uses CMake cross-platform build system.

	CGRU environment initialization is much simplified.
You do not need to edit or create scripts.
To setup CGRU you need to go in it’s root folder and source setup script (like in Houdini now).
Unix and Windows examples corrected to work the same way.
(And also total quantity of variables initializing by CGRU setup and needed for correct work is reduced.)

v2009.10.07

	Python class Job has a blocks array property.
You can manipulate it in your own way it to fill job with blocks.

	Python class Block can be constructed without any job and has a tasks array property.
You can manipulate it in your own way it to fill block with tasks.

	Python class Task can be constructed without any block or job.

v2009.09.16

New network protocol version. New database schema.

	Watch renders colors customization.

	Multi Host Tasks - tasks can run on several hosts.

	Python Class Block got setMultiHost method to describe multi-host tasks.

v2009.08.24

New network protocol version.

	Afanasy Watch GUI can manipulate job blocks parameters without to open job tasks window.

	afjob.py supports tasks capacity and capacity coefficients.

v2009.08.20

New network protocol version. New database schema.

	Job block capacity can be variable.

	Python Class Block got setVariableCapacity method to describe variable capacity.

	Job blocks errors solving parameters has ‘-1’ value by default.
It means to take this parameters from job user settings.
Watch does not show this default values.

v2009.08.12

New network protocol version. New database schema.

	Job block have a rule for generated tasks names.

	Not numeric block can generated tasks with preview.

	Python Class Block got addTask method to add tasks.

	Python Class Task got Task - New interface for not numeric blocks.

	Watch shows block generated task by double click on task in job tasks view.

 Index

Index

_images/nuke_afanasy_general.png
(V] Properties. o
o afonasy oo
General Parameters MultWrte Advanced Node
Job Name il
Frame First 1 Last 11 Increment 1
e RbetTime Aange
Frames Per Task 1 Sequential 1
Skip Existing Files
RENDER|| | Start Paused
Time Code * use [TGE set
REvE Caneal Gisze

_images/nuke_afanasy_multiwrite.png
(v:] Properties. o

o afanasy ula

General Parameters | MultiWrite Advanced Node

Add Nodes.

Connected nodes are independent

% Reverse dependence on connected nodes.

Wait whole frame range rendered

Force frame range

Construct single job

Revert Cancel Gioze)

_images/nuke_afanasy_advanced.png
(\:) Properties. o

o afanasy ula

General Parameters MultiWrte Advanced Node

% Create and render temporary scene file

Tickets NUKE:1NET:100

Pools _farm:10,work:-10,comp:10,sim:-10

% Render to temporary image

% Apply paths map to scene

Revert Cancel Gioze

_images/nuke_afanasy_environment.png
(3] Properties o

o afanasy ol

General Parameters MultiWrite Advanced Environment Node

ENV_VAR_1=valuel
ENV_VAR 2=value2
NUKE_EXEC=/ca/soft/nuke/Nuke13.2v6/Nuke13.2.
NUKE_VERSION_MAJOR=13.
NUKE_VERSION_MINOF
NUKE_VERSION_RELEASE=6
NUKE_VERSION_STRING=13.2v6

GetNike Environment

Revert) Cioze

_images/afwatch_style_light.png
Users: 5, Running 0

UlLevel ColorTheme Edit Preferences Help

Work Jobs Farm users
L0G]| sort: [Tasks| |Jobs| Fifter: Name| | || &= timurhai
T I
ORDER | Priority L1
o N -~ -
= Errors Task Avoid Host 3 (L)
| MRSy oo
o | N "
(== [r rhai Host:tibuntu
t imurhai - .
bs: 1/0 Run Priority Capaci] Jobs total: 1, running: 0
= ") ity host: tibuntu
Running tasks: 0
Capacity total:0

Registered: Cp 10 wion 10:48.13
Last activity: BT 04 asr 20:56.07

timurhai

Theme ‘Light'loaded

CGRU VERSION 3.0.0.04

_images/afwatch_style_military.png
Users: 5, Running 0 - o x

ORDER L}
PRIORITY =
L}
L}
capacy ™
TASKS NUM
timurhai-99 es:3b,3t,3r f5h tibuntu
10 pri cap |

timurhai
ersist.

_images/afwatch_style_hello_kitty.png
UlLevel ColorTheme Edit Preferences Help

et

ORDER
PRIORITY.

Need

capACITY

masksnom |

vork [Jobs] [Renders | [FUsers¥]

o o] o e [

timurhai
Jobs: 1/0 Run Priority Capacity

e/
=3 timurhai
Parameters =
Priority 09 ([..1]
ErrorsJob Avoid Host 3Ll
Errors Task Avoid Host 3Ll
Errors Retries 3Ll
Errors Forgive Time 5h (1.

Jobs total: 1, running: 0
Activity host: tibuntu

Running tasks: 0
Capacity total: 0

Registered: Cp 10 wion 10:48.13
Last activity: Br 04 asr 20:56.07

e Y

_images/nuke_afanasy_parameters.png
] Properties.

o afanasy

General Parameters MultiWrite Advanced

Plafrorm [BRyI%
Max Running Tasks -1
priority -1
Hosts Mask
Exclude Hosts Mask
Depend Mask
Global Depend Mask
Capacity 1
Max Tasks Per Host -1
Max Task Run Time -1

)

Cioze

_images/afwatch_style_hello_kitty_hell.png
:5, Running 0

UlLevel ColorTheme Edit Preferences Help

wok [JoBS | [RENDERS] [USERS |
L0G | sort: Tasks | |Jobs| Fiter: |Name| | | | =2l timurhai
Solve Parameters =
= Errors Task Avoid Host 3 (L)
[y TR apan] crosrens sl
= DA timurhai Pr ,3T,3R ErrForgive:5h Host:tibuntu.

Jobs total: 1, running: 0

1/0Run Priority Capact
e e et bt

Running tasks: 0
Capaity total: 0

Registered: Cp 10 wiok 10:48.13
Last actvity: BT 04 aar 20:56.07

|timurhai |

| Theme 'Hello Kitty Hell' loaded |

@ CGRU VERSION 3.0.004 9

_images/nuke_cgru_menu.png
g
;]

File

(O30 N NOR A

Edit Workspace Viewer

Bl vode Grapn %

Render

Cache Help [CGRU)
RULES
Afanasy Node
Dailies Node:
Render Selected.
Paths
Forum

Documentation.

2
F10

1

_images/afwatch_work.png
GOD MODE Work Jobs Farm Users Monitors
lerg Sort: | Created | |Running | Filter: |User | | view options | || =z KIT 0100 -
AUSE waterSurfParts v005 sim
191 £:45 c:13.4K E——
START Folders | Rues |
55 /cq/prj1/SWORD_IV/SHOTS/KIT/
KIT_0100/
Restart... ——— ==
| input | shoudiniffumwater [c| T/
Errors... = -
[output_| tersurfpartsvous [c] 1]
DELETE = -2
[seTBRANCH | Decnery
ta: ~0:01.06 timurhal POrametars
mph p99 0:00.46 Priority
35(1001.1035): mantra1 rt:51.08/a34s Mrtlh mrt10s m>5120 (111
v C)’ Max Run Per Host
1% 32 c352 a2 twaz = G o
Branch: /cg/prj1/SWORD_II
Username: panchenko.m
:00.11 dakatya Creation host: 1u20
$99 0:01.01 Created: Thu 30 Jul 15:21.16
31(1001-1031): W_IPG 510.56/a315 [10001 Started: Thu 30 Jul 15:21.19
84% r10 10K d21 1400
110001
£1(1001.1105:2107): geometry1 110001
43% 1 c1K 1100
|KIT_0100 - waterSurfParts_v00s_sim
| ob Done.

CGRU VERSION 3.0.0.04

_images/blender_afanasy_properties.png
* Shadows
> Indirect Lighting
£+ Eim

> @ simplity

¥ Afanasy

Job Name:
File Path:

Start Frame 1
EndFrame 250
Frame Step. 1

More options
Pack Linked Objects
Relative Paths

Pack Textures

T
Globl Dep.
Hosts Mask:
Excluce Ho.

Make movie

B sumitiod

> B Freestyle
d 250 > Color Management.
on | Cube | Verts:8 | Faces:6 | Tris:12 | Objects:0/3 | Mem:

PerTask
Sequential
Priority

Max Run Tasks

Start job Paused
Split Rendier Layers

Preview Pending Ap.

Show job

32.0 MiB | v2.82.7

_images/afwatch_tickets_jobs.png
eta: ~0:14.28 Lkochergin
mph1 p99 0:17.00

rt:s1:14.29/a1.07 [1000] |

x0T G

1064, exr 063 exr (065, exr 1066, exr.

| W1 W1 W W

DRV_0020 sparks v001

Tickets:

HYTHON %791 x1
MANTRA 9 x1
MEem 5 x10
Block Parameters

Sequential

Capacity

Parameters

==l

_images/afwatch_users.png
Users: 61, Running 5. - o

Work Jobs Farm users
=4 Sort: |Tasks | Jobs | Filter: Name &= timurhai
— Parameters
ORDER Priority
CraEET s Max Run Per Host
ErrorsJob Avoid Host
Need
Errors Task Avoid Host
_CAPACTY i Errors Retries
[Tasks num | 2000 o, Errors Forgive Time
S ord cap
Activity host: 123
Running services:
Registered: Thu 16 Jul 00:46.45
Tue 04 Aug 15:50.13
timurhai
Users list.

CGRU VERSION 3.0.0.04

_images/blender_preferences.png
o

Interace
Themes
Viewport
Ligtts
Editing

Animation

Input
Navigation

Keymap.
System.
Save & Load
File Paths

Blender Preferences.

> O System: BlenckriD auther

> O System: Dermo vioce

> O System

> O Systempr

> O System: Scenerformation

" @ Tools: CGRU Tools

Description: CGRU Toos

Location: Propertes > Render > Afarasy

file: Jeoruluginsenderaddorsican toolsl_init_py
Auttor: Timur Harulin, Paul Geraskin,Sylvain Maere
Version 100

emet: @) Remove
references:

Please, set CGRU install oot location

CGRU R
CGRU v

>0

(=]

oot location: /cqru
ersion: 3.0.0.04

UV: Magic UV

Video Tools: Refine:

ing solution

_images/blender_webgui_job.png
AJ 152% RDY RUN - Moxilla Firefox

% AJ152% RDY RUN
€ @ localhost ~c|@- Q » | =

@ lJOBS RENDERS USERS
550 (oo | orser 1] [roer | wame B

scene ETA=0:0017 timurhal

X RDY RUN

o
©
P e

P99 0:00.18
BLENDER_RENDER 155 /55 [1000]

(1] (Regisiea >

_images/nimby_4.jpg

_images/nimby_5.jpg
e P A

NIMBY, MOTHERFUCKER!
HAVE YOU TURNED IT OFF2~

_images/nimby_2.jpg

_images/nimby_3.jpg

_images/blender_webgui_tasks.png
@ ® @ R161% scene - Mozilla Firefox

102 RDY €0 s4

nav.xhtml

 Table of Contents

 		
 Welcome to CGRU - AFANASY documentation!

 		
 Downloads

 		
 MS Windows

 		
 Linux

 		
 Mac OS X

 		
 Sources

 		
 Installation

 		
 Linux Packages

 		
 MS Windows Archives

 		
 Mac OS X

 		
 Manual Project Build

 		
 Linux

 		
 MS Windows

 		
 Mac OS X

 		
 Configuration

 		
 Config files

 		
 Environment Variables

 		
 Manual Environment Setup

 		
 Config Overrides

 		
 Config Path Override

 		
 Afanasy

 		
 Server

 		
 Launch Methods

 		
 System Job

 		
 Post Commands

 		
 Wake-On-LAN

 		
 Events

 		
 Statistics

 		
 TIME-WAIT

 		
 Render

 		
 Launch Methods

 		
 Attributes

 		
 Editable Parameters

 		
 State

 		
 Resources

 		
 Paths Map

 		
 Services

 		
 Parsers

 		
 Thumbnails

 		
 Custom Resources

 		
 Windows Must Die

 		
 Pools

 		
 Creation

 		
 Attributes

 		
 Editable Parameters

 		
 State

 		
 Tickets

 		
 Watch

 		
 Jobs

 		
 Work

 		
 Farm

 		
 Users

 		
 Modes

 		
 UI Levels

 		
 Styles

 		
 Web GUI

 		
 Online Version

 		
 HTTP Server Configuration

 		
 Job

 		
 Attributes

 		
 Editable Parameters

 		
 State

 		
 Job Block

 		
 Attributes

 		
 Editable Parameters

 		
 Flags

 		
 State

 		
 Job Task

 		
 Attributes

 		
 State

 		
 Branch

 		
 Creation

 		
 Example

 		
 Attributes

 		
 Editable Parameters

 		
 Flags

 		
 User

 		
 Attributes

 		
 Editable Parameters

 		
 API

 		
 Python API

 		
 JSON Protocol

 		
 afcmd

 		
 afcmd cload

 		
 afcmd db_check

 		
 afcmd db_reset_all

 		
 Software Integration

 		
 3D Studio Max

 		
 Submission Dialog

 		
 Adobe After Effects

 		
 Installation

 		
 Tool Dialog

 		
 Watch Job

 		
 Shared Script Location

 		
 Blender

 		
 Setup

 		
 Properties

 		
 Job GUI

 		
 Cinema 4D

 		
 Afanasy Dialog

 		
 Submission

 		
 Scheduling

 		
 Masks

 		
 Clarisse iFX

 		
 In-App Submission

 		
 AfWatch

 		
 WebGUI

 		
 Setup

 		
 AfStarter

 		
 Developers

 		
 Fusion

 		
 Menu

 		
 Dialog

 		
 Job GUI

 		
 Setup

 		
 Houdini

 		
 Afanasy ROP

 		
 Distributed Simulations

 		
 Afanasy TOP Scheduler

 		
 Setup

 		
 Maya

 		
 meTools for Afanasy

 		
 Stand-Alone Dialog

 		
 The Simplest MEL Dialog

 		
 CGRU Maya

 		
 Natron

 		
 Afanasy Node

 		
 Complex Situation

 		
 Render Selected

 		
 Setup

 		
 Nuke

 		
 CGRU Menu

 		
 Afanasy Gizmo

 		
 Complex Job (Precomps)

 		
 Render Selected

 		
 Setup

 		
 Softimage XSI

 		
 Afanasy Window

 		
 Keeper

 		
 Description

 		
 Start Keeper

 		
 Launch System commands

 		
 HTTPS Server

 		
 AfStarter

 		
 Supported software

 		
 Scene Settings

 		
 Afanasy Job Settings

 		
 Regular Expressions

 		
 RegExp Checker

 		
 Rules

 		
 Player

 		
 Examples

 		
 Examples

 		
 How To

 		
 Appending new tasks/blocks to an existing job

 		
 JSON API

 		
 Python af module

 		
 Python afcmd module

 		
 Known limitations

 		
 Coding Rules

 		
 The Nimby Situation

 		
 Spending much time with machines do not forget that we are humans

 		
 Do not let producers to torture you much

 		
 License

 		
 About

 		
 Companies

 		
 Projects

 		
 History

 		
 Paper

 		
 Contacts

 		
 Changes Log

 		
 v3.3.1

 		
 v3.3.0

 		
 v3.2.2

 		
 v3.2.1

 		
 v3.2.0

 		
 v3.1.1

 		
 v3.1.0

 		
 v3.0.0

 		
 v2.3.1

 		
 v2.3.0

 		
 v2.2.3

 		
 v2.2.2

 		
 v2.2.1

 		
 v2.2.0

 		
 v2.1.0

 		
 v2.0.8

 		
 v2.0.7

 		
 v2.0.6

 		
 v2.0.5

 		
 v2.0.4

 		
 v2.0.3

 		
 v2.0.2

 		
 v2.0.1

 		
 v2.0.0

 		
 v1.7.0

 		
 v1.6.12

 		
 v1.6.11

 		
 v1.6.10

 		
 v1.6.9

 		
 v1.6.8

 		
 v1.6.7

 		
 v1.6.6

 		
 v1.6.5

 		
 v1.6.4

 		
 v1.6.3

 		
 v1.6.2

 		
 v1.6.1

 		
 v1.6.0

 		
 v1.5.5

 		
 v1.5.4

 		
 v1.5.3

 		
 v1.5.2

 		
 v1.5.1

 		
 v1.5.0

 		
 v1.4.5

 		
 v1.4.4

 		
 v1.4.3

 		
 v1.4.2

 		
 v1.4.1

 		
 v1.4.0

 		
 v1.3.1

 		
 v1.3.0

 		
 v1.2.4

 		
 v1.2.3

 		
 v1.2.2

 		
 v1.2.1

 		
 v1.2.0

 		
 v1.1.0

 		
 v1.0.0

 		
 v2009.11.12

 		
 v2009.10.07

 		
 v2009.09.16

 		
 v2009.08.24

 		
 v2009.08.20

 		
 v2009.08.12

_images/cinema4d_dialog_submission.png
Submission
Job Name:
Cube2Scene.cdd

Overwrite Output:

Priorty:
50 1
Framerange:
0 | R
%
By Frame:
1 | R
Sake Constraints
Do ot copy Scene to Hosts

Create Job Paused

Close Start Render

_images/clarisse_add_shelf_item.png
©® Edititem

Title

Description

Category

Script Path

lcon

Icon Custom

Afanasy

Rendering -

= [opticaru/plugins/clarisse/afanasy_submit.py

Custom -

= [opticgru/plugins/clarisse/afanasy.png

ok

Cancel

_images/cinema4d_dialog_masks.png
Masks.
Hosts Mask:

Exclude Hosts Mask:
Depend Mask:

Global Depend Mask:

Close Start Render

_images/cinema4d_dialog_sheduling.png
‘Sheduling

Frames per Task:

1 | R
Max Hosts:

0 | R
Max Runtime (min):

300 T
Capaciy:

4000 1

Close Start Render

_images/clarisse_dialog_b.png
Afanasy Submit
General Conditions

Priority

Max Run Tasks
Max Run Time
Wait Time
Service

Parser

2016.12.18 19:36:21
clarisse

clarisse

send Job

Capacity [-1

Per Host |-1

[paused

CGRU Version: 2.2.1

_images/clarisse_dialog_c.png
General | Settings

Needed OS |

Needed Properties |

Depend Mask |

Global Depend Mask |

Hosts Mask |

Exclude Hosts Mask |

Send Job | O Paused

CGRU Version: 2.2.1 |

_images/clarisse_afwatch_job.png
(oG]
=
[pau |
[sta |
| REH |
[ReT |
[DEL |
[opJ |

Jobs

Sort: | none | [none | Filter:

=
G

5(1-10:2): image

67%r2d3

Renders

Name

Users.

View Options

_images/clarisse_dialog_a.png
Afanasy Submit
Settings | Conditions

Job Name [scene | Engine |clarisse_node = Help

Archive |/cgru/examples/clarisse/scene.af@TIME@-timurhai.render | | Browse

& Export Archive & Delete Archive

Image |scene/image 2| Format |

Output |/cgru/examples/clarisse/render/img. it | | Browse |

Frame First | 1 Frame Last | 10 > Framestep |1

Frames Per Task |2 : Frame Sequential | 1 :

Send Job | O Paused

CGRU Version: 2.2.1 |

_images/clarisse_webgui_job.png
©©® @ AJ381% RUN - Mozilla Firefox
Z file;///op...index.html x | + CGRU AJ381% RUN
localhost a + ol & » =
JoBs) |(RENDERS) |USERS)
VEW | Sort [Order | Fiter [Name || T Lo scene
LoG & scene ETA=0:01.15 || _Folders RULES
RUN Prorty99 RunningTime:0:05.20 || " input
S Frames[5](1- 10 : PerTask2): image Render Timings: Sum55s / Average:28s Capacity(1000] | || scene af161218235408-
RES - || || mumairender
vov || = [815% Running3 Capaciy:3K Done:2 Ready [y | oput img £
P 50001 Errr ey e ey —
ST Blocks
PAU
Parameters. 081
st
Priorty %
us
o
DEL eva
Createdt
o) Sun Dec 18 2016 23:54:08
Started:

Mon Dec 19 2016 00:02:06

_images/custom_resouces_nvidia_message.png
Message

NVIDIA Driver Verion: 410.93

GeForce GTX 1080 Memory: Total 8116M, Used 1868M, Free 6248M Temperature: GPU 47C, Max 96C
Jcg/softshoudini/17.0.459/bin/houdini-bin: 875

Justlib/xorg/Xorg: 383

Jcgisoftinuke/11.3v2/Nuke11.3: 251

Jcgisoftinuke/11.3v2/Nuke11.3: 243

Iproc/self/exe: 91

Jcgitank/distr/players/djv-1.1.0-Linux-64/bin/djv_view: 8

krusader: 2

_images/custom_resouces_nvidia_plot.png
R[39/38]: B4/15F (n20)

GOD MODE Jobs Renders Users Monitors

LoG

Sort: |Priority || Capacity | Flter: |Name View Options
TG —

| 02600 (0/8) ——_—_— 0:01.22 free|
nim 23 2.3.1

012100 0/2) imurhal

NIM
FRE

_images/doom2.jpg

_images/dr.strangelove.gif

_images/dialog_job.png
b

: [AE Project.acp

Capacity:
Depend Mask:

El

121 Mo Rureing Tass: -1

Global:

Hosts Mask:

Exclude:

Recent:

(serractons

ot |

‘ython C:\cg\cgrulafanasy runk\pythonafiob.py “C:\cg \carulexamples\After FXVAE
Project.ap” 1 10 -by 1-fpt 1-node "Comp 1" output 'C:\cg\carulexamples\after PXrender seq.
[###2].1pg" pnd C:\cg cgrulexamples\afier FX° name “AE Project.zep”

_images/dialog_scene.png
Scene | b

Fle: Ci\olegrulexampies\after FXIAE Projectacp.

Working Directory/Project: | C:\ca\cgru'\examples\After FX. Use Scene Folder
Output Images: | C:\co\cgrulexamples\After PXyenderkseq. [2].1g

Frames: 1 +f 10 Siby 1 =+ pertask 1 2
Node/Camera: Comp 1 TakeLayer Pass/Batch:
Recent: e e e

‘ython C:\cg\cgrulafanasy runk\pythonafiob.py "Cr\cg \carulexamples\After FXVAE
Project.ap" 1 10 -by 1-fpt 1-node "Comp 1" -output C:\cg\egrulexamples\after FXrender seq.
[####].1pg" pnd C:\cg grulexamples\afier FX° name “AE Project.zep”

St Flpased [arew) [owmsee

_images/fusion_webgui_job.png
/e wrsrovrn

€)@ ooz

_images/houdini_afrop_command.png
A Jout/afanasy1 - o x
Alamasy sfanasyl #[0QOO

Jegjegrujplugins houdinijatanasyoti 4

Asset Name and Path afanasy

Submit Start Paused Preview Approval

General Parameters | Distribute Simulation | Separate Render | Custom Command | SOHO

Custom Command Mode:

' Prefixuwith SAF_CMD_PREFIX
Files

' Delete Files On Job Deletion

Service

Parser

_images/fusion_dialog.png

_images/fusion_main_menu.png
& Fusion Studio - [Composition].comp]
@ File Edit View Tools Window Help

Edit

Add Too ¥
i

tach Ml Masks o Path
Change Composiian Depth Globaly
e e S
-~

_images/houdini_afrop_environment.png
Ata

sy afanasyl
AssetNameandPath | afanasy.
Submit

General Parameters Environment

Houdini FX - /out/afanasy1 - o x
#H0 QOO

4 Jeg/cgrujplugins/houdini/otis/afanasy.hda 4

StartPaused Preview Approval

Distribute Simulation | Separate Render | Custom Command | SOHO

Environment Key Value
CUSTOM_ENV_VARL some value
CUSTOM_ENV_VAR2 some other
HOUDINI_LOCATION Jcg/soft/houdini/hfs19.5.534
HOUDINI_MAJOR_RELEASE 19 -

=

‘Get Houdini Environment | Remove Houdini Environment | Clear Environment

_images/houdini_afrop_general.png
A Jout/afanasy1 - o x
T — #HQOO

Asset Name and Path afanasy

Submit Start Paused Preview Approval

General Parameters | Distribute Simulation | Separate Render | Custom Command | SOHO

Outputriver L
Valid Frame Range Render Frame Range. + Single Task Local Render
s TS ESSTA :
FamesPerTask 1 I seauental 1
Render With Take. render 4

Connected Nodes Are Independent.
Allow Sub-Task Dependence

' Check Output Folder

v Render Temporary HIP File
Ignore ROP Inputs

v Generate Previews

_images/houdini_afrop_distributed.png
A Jout/afanasyl - o x
T — #H QOO

Jegjegrujpluginshoudinijatanasyoti 4

Asset Name and Path afanasy

Submit Start Paused Preview Approval

General Parameters | Distribute Simulation | Separate Render | Custom Command | SOHO

ControlsNote -
NuberofSices 2 I
—

capsety 100 —

ostask

Senice neracker Paser generic

Manual Tracker

Port

_images/houdini_afrop_soho.png
A Jout/afanasy1 - o x
T — #H QOO

Asset Name and Path afanasy 4| Jegiegrufplugins/oudini/afanasy.otl 4

Submit Start Paused Preview Approval
General Parameters | Distribute Simulation | Separate Render | Custom Command || SOHO

Afanasy ROP =

Program $HOUDINI_CGRU_PATH/afanasy_soho. py -

_images/houdini_command_job.png
LoG

PAUSE

START

sTOP

Restart

ALLTASKS

[Pavse |

[wannings |

RUNNING

SKIPPED

DONE

Errors...

DELETE

DEL DONE

Jobs:1 Run:1 45%

Work Jobs

sort: |none | none | Filter: | Name || View Options

£10(1-10): mantra timantra ifd]

0% 13 c3K 110

+10(1-10): mantra ifd rtis1.18/a8s (10001

90% r1 c1K a9 1103

Generate 'ifd + Mantra

Generate 'ifd' +

(<<
Mantra

Folders | Rues |
Iegitank/cgru/examples/houdin

| input | plesmoudni [c|[T|
| output | sudinifrender c|[7|
mantra

mantra_ifd

Parameters

Priority

Branch: /cg/tank
Username:

Created: Tue 25 Aug 11:32.44
Started: Tue 25 Aug 11:32.45

|sob added.

CGRU VERSION 3.0.0.04

_images/houdini_afrop_parameters.png
Afanasy afanasyl

Asset Name and Path

afanasy

Submit Start Paused

General | Parameters | Distribute Simulation

Platform

any.

 Tickets ¢ Auto Memory

Pools

Job Branch

Hosts Mask

Depend Mask

Priority

Max Running Tasks

Capacity

Render Time Min(sec)
Progress Timeout (Ho.

Min RAM (GB)

Override Service

Life Time (Hours]

$HIP

Fies Check Min/Max Size ME.

Preview Approval

Iout/afanasyl - o x

#HQAOO

Jegfegrujpluginshoudinijatanasyoti 4

Separate Render | Custom Command | SOHO

A

' Enable Extended Parameters

Exclude

Global

perost 1 |

Coefficents -

Maxhours) © I

Parser

¥ Skip isting

_images/houdini_afrop_separate.png
A Jout/afanasy1 - o x
T — #H QOO

Asset Name and Path afanasy 4 | Jegiegrufplugins/oudinijafanasy.otl 4

Submit Start Paused Preview Approval
General Parameters | Distribute Simulation | Separate Render | Custom Command | SOHO

Enable Separate Render

v RunroP
Join RenderStages

¥ Read Parameters From ROP
RenderArguments - @FILES@

[

' Delete ROP Files On Job Deletion

Tile Render

_images/houdini_complex_job.png
Work Jobs Farm Users
tes Sort: [none | none | Fitter: |Name || View Options | | (<<</ Complex Example
PAUSE
Folders RULES
START Jeg/tank/cgru/examples/houdin
sToP | input | nples/houdini [c|[T]
Restart. o Il
J [T —— [Coutput_ sudinirender [c] (1]
Errors... - —
J 4% r1 c1K a1 08
e Movie [open |
e — convert [Lopen |
mantra; [Lopen |
mantra-R [Lopen |
13% r1 1K d11 111 e el
£21(40-60): mantra-G tiafCache 41 rt:za.157a1.25 (10001 (R vm—————
14% rl cIK d3 1106 Hex1 Txa afCache_geoCacheA | open |
£21(40-60): afCache geoCacheB t[afSim rt:sd.30/adss (10001 (ST ey [open |
26% r2 caK a6 1109 B [.omecers =
£21(40-60): tCache geaCacheA tiafsim rt:s2.29/a37s (10001 ([9 L1l
19% rl c1K d4 1103 Gia Maximum Running 7 (.
#1(40-60:21): afSim geoSim [subl 110001
c) Tl | st egrtank
Username: timurhai
I Creation host: lu23
Created: Wed 26 Aug 11:31.10
Started: Wed 26 Aug 11:31.11
Complex Example
|sob added.

CGRU VERSION 3.0.0.04

_images/houdini_command_network.png
Jout % TreeView x Materalpaletie x AssetBrowser x + m v | nosend x| + =
€% o HEO € St »0
Add Edit Go View Tools Layout Help X EN> Manasy afanasy_cnd *H Qoo
Asset Name and Path afanasy 4 | Jeefegrufpluginsjhou.. &

SWMIE | StartPaused Preview Approval

General Parameters Distribute .. Separate Ren... | Custom Com... SOHO
v Custom Command Mode:
Name

Command mantra -V a -f "chs("cnd_files")"
' Prefixuwith SAF_CMD_PREFIX

(v L He Censc

/mantra_ifd/soho_diskfil

image $F4.jog v DeletefFiles On Job Deletion
H Preview "chs("../mantra_ifd/vn_picturen "B

afanasy_cmd

- Service

Parser

_images/houdini_command_tasks.png
44% Generate 'ifd’ + Mantra

mantra

10:

ol

+£10(1-10): mantra tmantra ifd)

100% d10 1105

Tasks:

| _host_[startslerrors|_time | state
o0

68 e JE Je Je Je el

mantra

o)

Tasks:

ifd
’

[host startslerrors| time | state

Info

W7 __s2__eo
Ws__s2__eo
00 2 _eo

T

_images/houdini_distribpyro_afgeneral.png
A Jout/afanasy1 - o x
T — #[HQAOO

Asset Name and Path afanasy 4 | Jeg/egru/plugins houdinijafanasy.otl T

Submit Start Paused Preview Approval

General Parameters | Distribute Simulation | Separate Render | Custom Command | SOHO

OutputDriver /obj /distribute_pyro/save_slices B
Valid Frame Range | Render Frame Range 4 singleTask Local Render
e G S
FamesPerTask 1 I Sequentil 1
WaitTime Hours Minutes
RenderWithTake | (Curent) &

‘Connected Nodes Are Independent.
Allow Sub-Task Dependence

' Check Output Folder.
Render Temporary HIP File
Ignore ROP Inputs

v Generate Previews

_images/houdini_distribpyro_dop_adjust.png
Jobj/AutoDopNetwork * TresView X MaterialPalette * AssetBrowser * + -
@
8 Qg

€ % (5ot & Autobopetwork

Add Edit Go View Tools Layout Help Xe® @ 28

distribute_pyro

) ((EEE sovce_density_from_spherel

UEW -y

'

SIS oo
-
é

gravityl

output

_images/houdini_complex_network.png
— geoCache

cache_a.5F4.bgeo

“ geoCacheB
/’ cache_b.$F4.bgeo

I ccosi IR =rcche

.

cache.§F4.bgeo’
\

(= o

G s

0 »

_images/houdini_distribpyro_afdistrib.png
A Jout/afanasyl - o x
T — #H QOO

Asset Name and Path afanasy 4 | Jeg/egru/plugins/houdinijafanasy.otl T

Submit Start Paused Preview Approval

General Parameters | Distribute Simulation | Separate Render | Custom Command | SOHO

ControlsNode /ob /AutoDophe twork /DISTRIBUTE_pyro_CONTROLS B
NuberrSices 2 I
—
capsety 100 —
ostask
P — baser generic

Manual Tracker

Port

_images/houdini_distribpyro_job_running.png
Jobs:2 Run:233%

Leg Sort: \none | none | Filter: Name View Options | || (zz<| distrib_pyro-

afanasy1- current_

PAUSE

| o =
4 £1(1001-1001): tracker e

sor | - Jeg/tank/cgrufexamples/houdini
< 0% r1 €100 luaz —— 0]
Restar? - | input | /examplesshoudini [c| |7
| #101001.1133:133 — ==

Errors... ——
45% r1 c1K 1107 E tracker [open |

| CUSTOM DATA | £1(1001-1133:13: save slices-s0 [open |

oeere | T E save_slices-s1 [open |
DELDONE | tracker-stop

Parameters
Priority

Max Run Per Host

Branch: /cg/tank
Username: timurhai
Creation host: 1u23

Created: Wed 02 Sep 11:18.31
Started: Wed 02 Sep 11:21.01
Running services:

hbatch: 2

htracker: 1

distrib_pyro-afanasy1-_current_

|sob added.

CGRU VERSION 3.0.0.04

_images/houdini_distribpyro_job_stopping.png
Jobs:2 Run:2 5%

L=s Sort: |none | none | Filter: Name View Options. distrib_pyro-

PAUSE | afanasy1-_current_

e o ruLss

= £1(1001-1001): tracker
B T pt e TR DY || cgrtanksegrusexamples/houdini

0% r1 €100 lud2
input | ru/examples/houdini |c| [T

Restart.

g -

1
errors.. | KQ))
L q tracker open
fcusrow oA g save slices-s0 open
[oeere | @ save slices-s1 open

[ECNE) 7~ £1(1001-1001): tracker-stop disave siices.") tracker-stop open
Y o ot imcense e

0% r1 c100 1108 Parameters
Priority

Max Run Per Host

Branch: /cg/tank

Username: timurhai
Creation host: 123

Created: Wed 02 Sep 11:18.31
Started: Wed 02 Sep 11:21.01
Running services:

htracker: 2

distrib_pyro-afanasy1-_current_

Job added

CGRU VERSION 3.0.0.04

_images/houdini_distribpyro_dop_orig.png
/obj/AutoDopNetwork * TreeView * MaterialPalette * AssetBrowser * + Ll
>
2 Qg

€ % (5ot @ Autobopetwork

Add Edit Go View Tools Layout Help Xe® @ =)

((EEEN sovrce_density_from_spherel

——
G e pyro
B

UE -y

pyrosolverl

mergel

output

=
-

_images/houdini_distribpyro_job_done.png
Jobs:2 Run:1 79% Done:1

L=s Sort: |none | none | Filter: View Options. distrib_pyro-

pausE | afanasy1-_current_

STAaRT | Folders RULES

sor | Jeg/tank/cgru/examples/houdini
Restart.. | input | /exampleshoudini || | T

Errors...
tracker open

save slices-s0 open

[custon pamal

DELETE | save slices-s1 open

] tracker-stoj open
DELDONE | |distrib_pyro-afanasy1-_current_ B o

Job Done.

CGRU VERSION 3.0.0.04

_images/houdini_distribpyro_tasks.png
28% distrib_pyro-afanasy1-_current_

1001-1001:1pertask/byl)

+1(1001-1001): tracker 12001

0% r1 €100 lua2 MEx10 4 x1

frame 1001 - 0% Iud2: Tracker lu42:52975 WEB:41207 51 e0 00927

hbatch (numeric:1001-1133:133pertask/byl)

£1(1001-1133:133): save slices-s0 d(tracker) 110001

1% r1 1K 1107 MEx10 4 x1

o 100023 %

frame 10011133 - 1133/77-0% - 57%

frame 10011133 - 1133/77-0% - 57%

_images/stat_tasks.png
©®© AFANASY Statistics - Mozilla Firefox

Date From: | 2013-11-26 Table | | Tasks Table | | Tasks Graph | Date To: | 2013-12-15]

Statistics received.
Service

nuke

MM

Username

timurhai
boltenkov

_images/houdini_pdg_adjustment.png
 Afanasy Scheduler afanasyscheduler *HQDO

Scheduler Tasks Parameters | Adjustment

' Report Item Fail On Error
Block on Failed Work Items

Validate Outputs When Recooking

Use IP Address

Max ltems Per Tick 30 =

34
34
« Check Expected Outputs on Disk
i4
1

Tick Period

_images/sysjob_tasks.png
(-] 0% afanasy

RT: S0/0

system (str:1fpt)
E:3b/1t)9r F1h Maxim [100]

% post_commands.

110 4257 &0 ready:671

[Dummy task. See all tasks iogs here.

52000 sovamoo

ot

[Dummy task. See ail tasks iogs here.

_images/sysjob_job.png
@ J[2) RO/1D/OE

0:01.43 - afadmin
99

afanasy

‘Your jobs list.

_images/tray_menu_software.png
EbOSEA 1

_images/tray_menu_afanasy.png
Bl MovieMaker
R Tools
Software

% Configure

& Documentaton..
 Forum...
System

I startwatch...
 Submitjob..
= CheckRegExp..

Web GUI
SetUser...
Setnimby
SetNIMBY
SetFree & Unpause
Eject Tasks

Eject And NIMBY
Eject Not My Tasks
Render Info

Nimby Schedule...

SetServer.

_images/nuke_simple_network.png
4 312

_images/nuke_simple_job.png
Jobs:1 Run:1 76% Done:0

L6 Sort: [none | none | Fiter: Name View Options scene.nk-afanasy4

PAUSE

= X Folders RULES
S {farm:10,1t:10,work:-10} p99 0:00.10

Jegitank/cgru/examples/nuke
+111(1-111%10): Write1 rt:55.16/a35 [10001
SIOE, - o input | fcgrurexamples/nuke |c||T

Restart

output render |c| [T
At | rppppvpp
| Write1 open

o pause |

[warnINGs | Parameters 55>
[running Priority 99 [[..]

SKIPPED | Gl farm:10,1t =

DONE

Errors... Branch: /render

oEEE | Username: timurhai
< Creation host: 123

DELDONE | Created: Wed 12 Aug 15:55.16

Started: Wed 12 Aug 15:55.47

scene.nk-afanasy4

Job Done.

CGRU VERSION 3.0.0.04

_images/regexp_checker.png
Qt RegExp checker:

[renderor

[(render{workstation)o[1-41{1,})

[marcH

_images/shashlik.jpg

_images/rules_scene.png
<« C @ usfx.ru N @
U R A R | project TOBOL scenes: SHOTS scene: REEL_6 }{‘I\’"'t
><| ART | TAG | ANN | SIZE | D F 0% [G)Lebedev lvan ® >>HIDE>
s |
News 4
e — KREP 1160 Fan1 | RIS ~
EPOL 100% UyTh SACHEVTH 3EMI0 (3717 CTHIKOBKY C NOCTEAYIOLLM semE S
HORSE Kazipom) Al A My B[S/ R D C[U
Toes
REEL 1 Bookmarks - 7 |¥p
e — o T i
= TOBOL - 7
REEL 3 TEST00%0 DIG_0270
REEL_4 - DJIG_0280
DIG_0200
REEL 5 DJG_0320
HEEE) = KREP_1070
JE=S 50% [G]Lebedev lvan | COMMENT (©] KREP_1140
ADM_0090 [LlLva Fi595 0%] = T — | || e
= = :
KREP_1160 S Mak) Fid1l e
= KlAGo] . Jovak) — BepxHii (0POA, 3ATHPKA HXHEIO OPOAR M0 (oHY 1 THTP Playlist
TBS_0020 [Lva 56 ToGonkck M 108 ——
: »] ploa
TBS_1400 [LlLva Fi431 [508] PERMISSIONS
TBS_1410 [LlLva Fi140 [508] Recent
TBS_1420 [LlLva Fi594 [508] TBS 1410 Fi140
= —— AHren BepxHuii ropog, Hauano Axrena
CREDITS_0530
TBS_1400_01
ZP_010
ZP_010m 50% [G]Lebedev Ivan @
TITLE 1065 == ==
TRAILER Toes ‘AnrenAvren & Hefie , BepXHMi 10POR
zp ; ;
e —
/€q/prj1/TOBOL/SHOTS/REEL 6 & | 230
t - &

_images/afwatch_farm_services_tickets.png
Services

ADD
REMOVE
ENABLE
DISABLE
cLear

Tickets

Edit

Edit Host

New Render

START
CUSTOM DATA

P: 9500
[arch| [@tp] [~ generic] [movgen| () postema

FWasns B2

TR 12012

pi2 27 623 c:17400
S hbatch: 17 hbatch mantra; 6

a4 R 5075

r:15 23 c:17400
. hbatch mantra: 6

Ta 676 Lk 478" (TR 505

 hbateh: 17

system

‘wakeonlan

2 test] ¥ nbatch: 25 8 nbatch_mantra: 15

[add |

i arch [dis | (rm |
@ ftp
. generic

movgen
© postemd [dis | (rm |
~ system

wakeonlan | dis | [rm |
A walk

& test

[dis | (rm |

Tickets Pool |add |
HyTHON 791 1515
MANTRA Y. 1212

Mem G 12012

Tickets Host

Parameters
Pattern

Priority

Pools Total: 6
Renders Total: 79

Created: Sun 26 Jan 15:06.17

_images/afwatch_jobs.png
Work Jobs. Farm Users.
Leg Sort: none | none | Filter: | Name. View Options | || oz Zbun_400_v000-af-
PAUSE render-r2048-d2
staRT | ‘mS p99 mnt inb ips 33d20:03.12 (I RULES
“ror /cg/pri1/SWORD_T/SHOTS/IZBA/
12840400/
Restart
17 zbun_400 v000-af-render-r2048-d2 input | DO/WORK/houdini |c| |T
e 50 mph1 p99
L J 52(1001 :533:20.37/a1:02.48 Mre10h mrt10s m>32768 [11] totlh output_| vzbunizbun v00o [c) [T
o pause)| | €53
K 2| B | 100% a32 w2 101 Ea 9 |
| warninGs | (028.exe| | zbun close
RUNNING
Tickets: add
D HYTHON %791 x1]
DONE MANTRA 7% x1 1
Errors Block Parameters show all
(sow HosTs| Sequential 10 (L]
5] £32(1001-1032): W PG
RESET HOSTS J Capacity 1L
, ~ 75% 8 caK d24 12
[RETRY TASKS | Task Max Run Time 10h (L]
DELETE Task Min Run Time 105 (L.
DEL DONE Task Progress Timeout 1h (L]
1. Need Memory 32768 [[..]
¥ t72(1001-1072): mantral rt:s39.12/a52s Mrtlh mrt10s m>5120 (111
’ 6a% L PR R | parameters s>
Priority 99 [fd

| I I I I I I I I I Wait Time 2020.08.03 23:32:14 [[..]
Max Run Per Host 1 [

zbun_400_v000-af-render-r2048-d2

CGRU VERSION 3.0.0.04

_images/afterfx_scripts_menu.png
File] Edit Composition Layer Effect Animation View Window Help

Interpret Footage. »

New V| Replace Footage 3
Open Project.. -0 Reload Footage Ctl+fltsl
Open Recent Projects v | Reveslin Bxplorer
Browsein Bridge. CtleAReShite0 | Revealin Bidoe
Close Ccutew Project Settings... CieAltShiftrk
Close Project - °
S Caes b
Swvehs »

Increment and Save CtieAleShiteS

Revert

Import ,

Import Recent Footage s RunScrpt ie..

Export > OpensSariptEditor

Adobe Dyrarmic Link | st

Goto Adobe Story.. Ny
story. o N

Find CuF Convert Selected Properties to Markersjox

AddFostage o Comp Cal+/ Demo Palettejox

New Cornp from Selection Double-Upjox

Consoldate Al Footage Find and Replace Textjax

Rermove Unused Footage N————

Reduce Project o

CollectFils Scale Selected Layersjox

LrE T Smart Importjsx

EEC st Layers by I Pointjsx
Create Provy »

SetProvy »

_images/afwatch_farm.png
GOD MODE Work Jobs. Farm

Sort: |Priority| | Name | Filter: |User

Users

View Options

Tickets.

w Render.

[ERROR: Ouput

DELETE
1 10007 KIT_0100 - waterSurfParts V008 SImIg¢ Banchenke.m - 2:05:39 47%
T x1 GEax1 @ERxS 11: zbun vo00-debris_r timurha - 0:01.10 61%
T Hax1 SExs 1 101.03 50%
s
) 1000: KIT_0100 - waterparts.v036 Simigeam panchenkoim - 133153 49%
5. 4 ix1 giax1 @ERxS 11: zbun vo0O-debris ¢ timurhai - 0:01.10 66%
T Hax1 SExs 1 101.03 52%
2o
“eix1 x5 11: zbun_v000-debris_roof(n timurhai - 0:01.10
“ix1 xS 11: zbun_v000-debris_botim timurhai - 0:01.03
o
“iix1 x5 11: zbun_v000-debris_legsin timurha
“ix1 xS 11: zbun_v000-debris_legs_¢ timurhal
r c 0 s g s
3 1022
) 1000 KIT_0100 - waterParts v035_simigeome panchenko m < 4141104 67%
5. 4 ix1 giax1 @ERxS 11: zbun vo0O-debris_r timurhai - 0:01.10 63%
T x1 ix1 FRxS 11 zbun_v000-debris_b timurhal - 0:01.03 42%
ez
CPUL: 48.0
legsin timurhai - 0:00.05
5T X1 ‘fuxl @EExS 11: zbun vo00-debris_legs ¢ timurhai - 0:00.04
Users list.

CGRU VERSION 3.0.0.04

2:05.37 busy

0:01.08 busy

Services

Tickets

Parameters

Info

Monitors

_images/afwatch_style_dark.png
= Users: 5, Running 0
UlLevel ColorTheme Edit Preferences Help
Work Jobs Farm users
fos] Sort: Tasks Jobs Filter: Name =< timurhai
Solve ==
bob Priz99 ErrSiv:3B,3T,3R ErrForgive:Sh Host:tibuntu ML —
St lobs: 2/ 0 Run Ordered Capacity TSI
Priz99 ErrSiv:3B,3T,3R ErrForgive:sh »
E— Errorsjob AvoidHost 3 [
Errors Task Avoid Host 3@
o Priz99 ErrSiv:3B,3T,3R ErrForgive:sh
Ordered Capacity JNEICALNT 3@
capacrTy Priz99 ErrSiv:3B,3T,3R ErrForgive:sh RS Errors Forgive Time sh i@
Ordered Capacity
TASKSNUM ey Priz99 ErrSiv:3B,3T,3R ErrF st Host:tibunt
imurhai ri:99 ErrSiv:3B,3T,3R ErrForgive:sh ost:tibuntu)
Joba: 170 Run priority capacity GG IUICL)
Activity host: tibuntu
Running tasks: 0
Capacity total: 0
Registered: Cp 10 wiow 10:48.13
Last activity: BT 04 aar 20:56.07
timurhai
Users list.

CGRU VERSION 3.0.0.04

_images/houdini_pdg_job1.png
STOP.

Move...

Restart.

Errors...

LISTEN

[custon pamal

DELETE
DEL DONE

Job added.

Sort: |none | |none | Filter: | Name

£1: PDG-GRAPH

0% rl €1 1u24-00

Users

L] | view options

0%
h(1u24-00) p99 0:01.49
m

x1

¥ 4o #441 pdg-test-PDG-topnetl

a' £24: smoke src_ropfetchl
I 100% d24 1u31-08

a' ta: smoke sim ropfetchl
I 98% rl c100 d3 1u31-08

P99 0:01.41
rt:s1.57/ads [100] |

A

rtis1.47/a35s [100] |

A

516.26/a42s [100] |

pdg-test-PDG-topnet1

CGRU VERSION 3.2.1

Folders

smoke src_ropfetch1
smoke sim_ropfetch1
mantra_render

Parameters
Priority

Branch: /cg/prj1/SWORD_IIT
Username: timurhai
Creation host: 1u24-00
Created: Cp 11 a8r 10:45.46
Started: Cp 11 agr 10:45.47
Running services:

hbatch: 1

hbatch mantra: 48

_images/houdini_pdg_job2.png
STOP.

Move...

Restart.

Errors...

LISTEN

[custon pamal

DELETE
DEL DONE

Job added.

Sort: |none | |none | Filter: | Name

£1: PDG-GRAPH

0% rl €1 1u24-00

Users

L] | view options
0%

h(1u24-00) p99 0:04.27
m

x1

#4841 _pdg-test-PDG-topnetl

@' £24: smoke src_ropfetchl

I 100% d24 1u31-08

@' ta: smoke sim ropfetchl

I 100% d4 1u31-08.

m' 144: mantra render

I | 100% d144 n11

@' ta: wedge overlay ropfetchl
I | 100% da u31-01

@' £8: wedge mosaic ropfetchl
I 100% d8 1u27-01.

[t1: ffmpegencodevideol

4 -

eta: ~0:00.53 83%
P99 0:04.19
rt:s1.57/ads [100] |

A

rt:53.11/a475 [100] |

A

rt:51:55.07/a475 11001 |

A 9in |

rt:5565/alds [100] |

A

rt:s1m/a7s (1001 |

A

h(1u24-00) [100] |

pdg-test-PDG-topnet1

CGRU VERSION 3.2.1

Folders

smoke src_ropfetch1
smoke sim_ropfetch1
mantra_render

wedge overlay ropfetch1
wedge mosaic ropfetch1
ffmpegencodevideot

Parameters
Priority

Branch: /cg/prj1/SWORD_IIT
Username: timurhai
Creation host: 1u24-00
Created: Cp 11 a8r 10:45.46
Started: Cp 11 agr 10:45.47

_images/houdini_pdg_cooking2.png
A

Mastsftopnets « +

€ & [~k — topnet
Add Edt Go View Tools Layout Help
Tasks ® P S x0

0 959 ©lrunning - Owaiting

Houdini FX - panel1

) R sroke_variations e (7)/ SR fiverbyrangel

smoke_src

[

fobfsmke_sc/ceate._densi.

ume mantra_render

o

smoke_sim

obi/smoke/import/import_pyrofie

s

Jtasks topnetyrender/mapfral

e

wedge_mosaic

505 SFa.exr

o

I o

* & (@I afanasyscheduler

fimpegencodevideol
—

55 & 5 G

Jobs:1 Run:1 83%

41: ffmpegencodevideol

eta: ~0:01.08 83%

99 0:05.35

0% r1 c100 t12.

wedge mosaic.0055.exr

_images/houdini_pdg_edit_parameter_interface.png
Editing Node: Jtasks/topnet1/smoke._src

Create Parameters

ByType RenderProperties | Node Properties From Nodes

©-® root
©- Object Properties
W Node Properties
W Scheduler Properties
@B Afanasy
10 Tasks Capacity (afanasy_capacity)
b Hosts Mask (afanasy_hosts_mask)
bl Exclude Hosts Mask (afanasy_hosts_mask_exclude)
10 Maximum Running Tasks (afanasy_max_running_task
10 Maximum Running Tasks Per Host (afanasy_max_run
10 Memory Needed GB (afanasy_need_memory)
10 Task Minmum Running Time (Sec) (afanasy_task_min
.2 Task Maximum Running Time (Hours) (afanasy_task_
b Service (afanasy_service)
bl Parser (afanasy_parser)
bl Tickets (afanasy_tickets)
W Extra Environment
W Common
W Deadline
W HQueue
W In-Process
W Local
W Tractor
©-J TOP Network Properties
T VOP Properties

Filter

Apply

Parameter Interface for ‘smoke_src' Node

Existing Parameters 3

Show Invisible Par...
©-® root

&l ROP Geomety
|~ B Evaluate |
[V overrideF
[~ overrideF
-2 Frame Rar
v Expandin
Separator
bl Renderwi
v Use Exter
{4 SOP Path
D output il
[V UseFileT:
b output Fil
B Transform
[V createint
[V nitialize s
[V Alfred styl
[V ReportNe
{10 save Retri
L v saveinBa
o ROP Fetch
{~ B Generate)
{~H Cache Mo
[V Reset SHIF
Separator
v All Frames

10 Frames pe ™
5

Filter v

Discard

x

©]

Parameter Description
Folder Type

Name

Label

Default

nstance

Callback Script
¥ Available For Im
Invisible
End Tab Group
Tab Disable When
Tab Hide When
Disable When
Hide When
Tags

Import Settings ¥
v

Accept Cancel

_images/afterfx_dialog_general.png
Submit Job To Afanasy

General Hvie
Frame start
o
Frame Finch
a0
Frame Increment
1
Frames per Task
s
Copacity
e
Render Settings
Mem_usage 40 50

Comp Name:
Comp 1
utprocessing

Stert Paused

Hosts Mask

Exclude Hasts Mask

Render

(Renderticioe)

_images/houdini_pdg_scheduler.png
 Afanasy Scheduler afanasyscheduler *HQADO®

Scheduler | Tasks Parameters | Adjustment

JobName $HIPNAME-PDG-"opname(". .

JobBranch $HIP

PDG Directory ~ $HIP LS
Path Mapping. Global %
Path Map Zone

Submit Graph As Job

Start Paused Submit Graph As Job
Cook JobName " chs("job_name") " -CookGraph
p— I
. I
Hosts Mask Exclude
Depend Mask Global

Sevice hbatch_pdg Ticket PDG

_images/afterfx_dialog_movie.png
General | Movie

E—
e =T

_images/houdini_simple_job.png
LoG

PAUSE

START

sToP

Restart.

Errors...

DELETE

DEL DONE

Jobs:1 Run:1 63%

Sort: [none | none | Filter: |Name View Options

10(1-10): mantra jpg .50/a185 (10001

 ra caK d6 110

ol ol ¢ p 6 | ¢
e e e [e [e |

Houdini simplest job

Houdini simplest
Job

Folders RULES

Jcgitank/cgru/examples/
houdin

input | les/houdini || | T

output | dini/render ||| T

mantra jpg close

Tickets: add

Block Parameters | show all

Sequential 1 [E]

Capacity

Parameters
Priority

Branch: /cg/tank
Username: timurhai

Creation host: 123

Created: Thu 20 Aug 12:59.57
Started: Thu 20 Aug 12:59.58

liob Done.

CGRU VERSION 3.0.0.04

_images/houdini_pdg_job3.png
Users

sort: [none| | none | Fiter: | Name = J (1) [x.) |view options

DEL DONE

Job Done.

CGRU VERSION 3.2.1

_images/afterfx_afwatch_job.png
&5 a: R1/0D/0E B1-80% =) 5=
Renders | [_Users

‘ Sort:none. Fiter: Name G

0:00.47 - timurhai
i 599

m RT:S51.28/A11s 10001

80% Comp 1 10(0-49:5):r2 d8 €0

CGRU VERSION 2.0.0

_images/houdini_pdg_parameters.png
I

L

' En
]

_images/houdini_simple_network.png
out

Tresview

MateriaiPaiste x AstBrouser x

€% (@

Add

Edit Go View Tools Layout Help

BRG]
XE®NE|

— Simple_Run_ROP

HEE ont2

image.$F4.jpg

afanasy
-

ofanasy x +
€ (@

Afanasy afanasy

BRG]

#HQOO

Asset Name and Path afanasy 4 [Jegcarujpluginsfhou... 4
Sibmit | Strtaused Preview Approval
General | Parameters | DistributeSi.. | SeparateRen... | CustomCom... | SOHO
JobName Houdini Simplest Job
OutputDrver ~
Valid Frame Range 4 singleTosk LocolRender

Start/Endjinc
Frames Per Task
Wait Time:

Hours

Render With Take

1 10

Sequential

(Current) &

Connected Nodes Are Independent
Allow Sub-Task Dependence

¥ Check Output Folder

v Render Temporary HIP File
Ignore ROP Inputs

v Generate Previews

_images/nuke_complex_network.png
—

3u 3

Key.000Lext

fial
O00Lexr

Readl
final.000L ex

%
.

_images/nuke_complex_job.png
Jobs:1 Run:1 81% Done:0

Los : [none | none | Filter: | Name View Options scene.nk-comp

PAUSE
Folders RULES

START | Jeg/tank/cgru/examples/nuke
410): preview tifinall :

stop | input | rcgrurexamples/nuke |c| [T
< 61% r16 c16K d6B 1102

Restart
111(1-111%10): final tiraw-1 output render [c| T

AULTES 75% r14 c14K 484 1u53

[pavst | preview
final

[warnINGs |
5 o raw-back

RUNNING | : raw-key
) raw-key
SKIPPED | 88% r7 c7K d98 1108

SN Parameters

4] = Priority
erors. | (Y | E 2o Bl (BN

DELETE | Branch: /render
Username: timurhai
Creation host: lu23
Created: Wed 12 Aug 17:13.11
Started: Wed 12 Aug 17:13.12

DEL DONE

scene.nk-comp

Job added

CGRU VERSION 3.0.0.04

_images/nuke_render_selected_2.png
Nodes

First Frame: 1.5
Last Frame: 11.32

Frames Per Task: 1

Frame Sequential: 1

Store Frames Settings

Start Paused

ok Cancel

_images/nuke_render_selected_1.png
Nodes:
First Frame
Last Frame:
Frames Per Task:

Frame Sequential

Store Frames Settings

Start Paused

oK Cancel

_images/houdini_pdg_cooking1.png
Mastsftopnets « +
- tasks topnetl

Add Edit Go View Tools Layout Help

Tasks ® B S X0 3 runn

smoke_variations [-

—
‘ b
[0e ey i
[TE——
: ! Va IR enico_render

Jtasks{topnetyrender/mapfral

smoke_sim

obijsmoke
s

import/import_pyrofie

505." @)fedgeindex’ SF4ipe

Houdini FX - panel1

JORI collect_frames

e

[—

505 SFa.exr
C—)

o

I o

> o (@I afanasyscheduler

fimpegencodevideol
—

g

Jobs

Sort: |none | |none | Filter: | Name

)
©L 70% ra0 cak as1 w27-01

21.2.0048 mantral.3.0043

i

DEL DONE

.

Jobs:1 Run:1 90%

rt:543.08/a31s [100]

o

mantral.2.0044

o N

mantral.2.0039

_images/houdini_tilerender_job.png
LoG

PAUSE

START

sToP

Restart

ALLTASKS

[pavse |

[wannings |

RUNNING
SKIPPED
DONE
Errors...
DELETE
DEL DONE

Job added

Jobs:1 Run:1 62%

Sort: \none | none | Filter: |Name View Options

99 0:00.26
110001

0% r4 caK 1106

mantra exr-R timantra exr-G]

=
)| Sm—

Mantra Tile Render

CGRU VERSION 3.0.0.04

Mantra Tile Render

Folders RULES
Jegitank/cgru/examples/houdin

input | apleshoudini | [T

output | sudini/render [c| | T

mantra_exr-J
mantra_exr-R

mantra_exr-G

Parameters
Priority

Branch: /cg/tank
Username: timurhai
Creation host: 123

Created: Tue 25 Aug 12:01.48
Started: Tue 25 Aug 12:01.49

_images/houdini_tilerender_network.png
Jout ® Trsview » Matersipaste x fecetbrowser -
€3 @ T MO € (@
[| add Edit Go view Tools Layout Help X E B> Anasy afanasy_tile
etrareanira | T
[TSBRET Sortpased previewApprovl

General Parameters | Distribute’Si... | SeparateRen... CustomCom... SOHO
' Enable Separate Render

— Separare_Tile_Render v runRoP
i

' Read Parameters From ROP
RenderArguments - @FILESE

b 1 Files "B
' Delete ROP Files On Job Deletion
Images "B
 TileRender
Divisions 2 a

_images/houdini_subtask_network.png
A Joutsaf_cache SN L
_Mfanssy of_cache #HAOO® €% (@ R
‘Asset Name and Path afanasy ¢ | jegfegufplugins/n.c & . Atanasy afanasyl *[aQooe
General Parameters | Distribute... SeparateR... CustomCo.. SOHO _ AssetNameandPath afanasy + | fegfcgrujpluginsjhou... &
Jobliame SHIPNAWE.$0S SWME | StartPaused Preview Approval
Output Driver B | [General parameters | Disroutessi.. | SeparateRen... CustomCom.. | SOHO
JobName Sub Task Dependence
Valid Frame Range | Render... § Single Task Local Render Output Driver -
startfEnd/inc 80 120 1
fomiers [Jesise [-1 vl Frame Fange SngeTask Local Render
Start/Endinc 80 120 1
TR e FramesperTask 1 I Sequential 1
RenderWithTake | (Curent) &

WaitTime Hours Minute:
Connected Nodes Are Independent

¥ Allow Sub-Task Dependence.

RenderWithTake | (Curent) &

Connected Nodes Are Independent

ubTask_Dependence Allow Sub-Task Dependence

¥ Check Output Folder

v Render Temporary HIP File

IR :=ocache
T ccesrivge (R e ios: gnoreROPInputs
af_cache image $F4.jpg v Generate Previews
o
afanasyl
-

Input Operators (Drag/Drop to reorder] N

_images/houdini_subtask_tasks.png
21% Sub Task Dependence - o x

hbatch mantra (numeric:40-60:1pertask/by1)
=17 t21(40-60): mantra Ipg2 taf cache *1 rt:s3m/a36s [1000]

" 23%r5 e5K d5 111

s =
FrrmoeTe s
fr —
e R
frmin B
e -
e —
—
—
—
=
—
—
—
—
—
—
—
—
—
—

hbatch (numeric:40-60:21pertask/byl)
£1(40-60:21): af cache geo cache [sub] 110001

33% rl c1K a2

| frame 40.60 . 21/10.0% - 47%

_images/max_afwatch_job.png
(] J[2: R1/1D/OE B1-25%

08.20 son

0:00.51 - tima.

1 599
(& s 11000]
s vessaocato Comeraos @ raTeo

Your jobs lst.

_images/max_submission.png
e

Start Frame 3
End Frame (15
By Frame 1

Frames Per Task 1

Overrde Camera

e
‘Specify Working Directory:

 E—

Render Batch View

Prioity =1
VaxHosts <1
Copacity £1.
Depend vask [
obal Depend]
[e—
Exciude Hosts]

Save Temporary Scene
Render

Start Job Paused

_images/houdini_tilerender_tasks.png
= 79% Mantra

Render - o x

<0
<0
<0
<0
<0
<0
P
<0
<0

<0
mantra (str:-dpertask)
rtisd.22/a11s (10001

_images/linux_menu.png
JIESHONS) Places system %) QMM HI KA] BF
%, Accessories -
B Games =

@ intemnet > @ F-Spot Photo Ma:z (CGRU Keeper

Rl office » @ GIMP Image Editor

4/ Programming » . Inkscape Vector Graphics Editor
Sound & Video > #& OopenOffice.org Drawing

& System Tools » & simple Scan

9 wine -

P

Ubuntu Software Center

_static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/down.png

_static/down-pressed.png

_static/file.png

_images/houdini_simple_tasks.png
Info

_images/houdini_subtask_job.png
Work

=49 Sort: |none

none
PAUSE

21(40-60);,

START

sTOP
20%
Restart..

£1(40-60:21): af cache geo cache [sub]

Errors...
a2%

DELETE

DEL DONE

Jobs:1 Run:131%

Jobs

Filter: Name || View Options

mantra ipg2 tlaf cache .*] rt:s2.21/a35s [1000]

=

5 c5K d4 1109 Taa Ta

110001

1 c1K a2 T

Sub Task Dependence

Sub Task

==
Dependence

Folders | Rues |
Iegitank/cgru/examples/houdin

| input | ples/moudini [c| ||

| output | sudinisrender |c| ||

[open |
[open |

mantra jpg2

af cache geo cache

Parameters
Priority

Branch: /cg/tank
Username: timurhai

Creation host: 123

Created: Wed 26 Aug 11:09.57
Started: Wed 26 Aug 11:09.57

|sob added.

CGRU VERSION 3.0.0.04

_images/natron_complex_network.png
e -
=3 L

RN/

_images/natron_node_graph.png

_images/natron_afanasy_scheduling.png
pedeliaoil el el

‘General Scheduling Multi-Write Node Info

Platform:
Capacity: [-1
Max Running Tasks: |51
Max Tasks Per Host: [51
priority: [F

Hosts Mask:

Exclude Hosts Mask:

Depend Mask:

Global Depend Mask:

_images/natron_complex_job.png
AJ 128% RDY RUN - Moxilla Firefox

% AJ128%RDY RUN

€) @ localhost v B s & » =
m JOBS RENDERS USERS
Sot [order | Fier: [Wame || | [a] scene_complex.af_final
o *1 'scene_complex.af_final [ETA=0:02.02 timurhai || Folders RULES
e RovRin 99 00047 |([cutut
O o110y w_ Tl TR pre7T o] T
oo ——
ERR. 30% don:3 rdy:7 Sl
e 1T o_pre_w_back T pre_w_from) 155755 110001 | Parameters o8y
KT eees—] =
T som rare
AP i Info.
AT o_pre_w_ront o0 o (1000
(1-11): af_pre_w._f 1§ 1 5
e] ||Siooszots 183627
RUN 27% don:3 rdy:7 run:1 ‘Started:
= e Som ovt04 2015 184036
oon
L.t *, L=t .mY
""" ' """
B
Y
s
om
[

206

_images/nimby_1.jpg
E

Looks like that
somebody has
leftisomething

_images/natron_render_selected_dialog.png
@®® Natron

First Frame:
Last Frame:

Per Task:

Send Job Paused:

_images/natron_webgui_job.png
* AJ127%RDYRUN x

€ localhost: v o ¢+ % > » =
JOBS J RENDERS USERS
[View|| Sot [order | Fitor | Name || | LH]| Foers
Loc |4 scene.Afanasyt ETA=0:00.32 timurhal || 5,
x RDY RUN P99 0:00.12
ERR] 3\ 11(1-11): Write1 10s 13s [1000] Parameters 0oBJ
e (O —)
A || | 27% don:s ray:7 runit info
asp img 201100
o
—mr——u

_static/ajax-loader.gif

_images/xsi_afwindow_varirender.png
Property Panel N

~ afSubmitProperties
Submission Scheduling VariRender

Enable VarRender

Arbute

start value (B0)

Step Go
cant (&)

_static/comment-bright.png

_static/comment.png

_static/comment-close.png

_images/xsi_afwatch_jobs.png
1/1D/0E B1-50%

0:01.45 oon
o100 -tima
vid 5%
R sazuazs 1060}
ot s iaze

_images/webgui_farm.png
)

o x
CGRU X | ¥ Watch — CGRU - AFANASY X | % AR:3 X |+
<« c @ localhost: 150% * inoea@ =
I Branches I I Jobs I I Farm I I Users I I Monitors I Bocuaiiation [Eomm
LOG Sort: [Priority| Fiter: [User || | [H] 1
ADDPOOL |[/ HostMaxTasks:89 HostCapacity:2100 SickErrors:3 Priority:99 Parameters O8J
Pools Total: 3 Renders Total: 11 2200gpu hdd Priority 99
New Render... . " —
Atest:3 generic | [@nuke| | g movgen | [&) hbatch | [& hbatch_mantra| [S mantra | :
HEAL |13 «C7x2010:300 [WOW x1211] (Emx) L lolaluss £
PAUSE Tasks: 0 Capacity: 0 01.12 free 3
UNPAUSE farmi] Priority:99 Info
Services... Pools Total: 2 Renders Total: 10 D=1
Created at: Wed Jun 10 2020 10:46:19
Remove e
e O N RN N PO %20 |
Tasks: 0 Capacity: 0 0:00.23 free e (] > (]
Disable — ‘ & lestu‘ ‘ genenef“ l @ nukeE]l
— R N N e e
Clear Tasks: 0 Capacity: 0 0:01.11 free B movgen E]l l), hbatch E]l
render/ [rr.¥] Priority:99 =
Ticket Pool Renders Total: 4 l S@i hbatch,mantraE]l l éﬁi mantraE]l
Ticket Host Atest:3 Disabled servi
isabled services:
eI L= k3 5-800
<+ rr0001 ™M N 0.001 3 renderer Priority:99
Launcn. 4 S I G O N T :
aune 70 Tasks: 1 Capacity: 10 0:00.36 busy Tickets pool:
DELETE m GPU:3 NETx2010:300
&> | [1000] _empty_ [block] [frame 87] timurhai 0:00.01 | xI:1
)"A(Tasks: 1 Capacity: 10 0:00.35 busy Tickets host:
A\ [1000] _empty_ [block] [frame 85] timurhai 0:00.01 \ fi=:-) DEEN) m GPU x1
L 2 . D ~00_|
/ I
Services cleared ‘ 3.0.0-04

_images/xsi_afwindow_scheduling.png
[

~ afSubmitProperties
Submission Scheduling | VariRender

Priarity
Copacity.
Max Hosts
Task Max
Run Time.
Hosts Mask
Exclude
Hosts Mask

Depend
Mask
diobal
Depend
Mask

{ G| D
C I D
{ G| D
d | D

_images/xsi_afwatch_varirender.png
J[2]: R1/0D/OE B8-28%

yid

rovam 99
[|
[|
RT: 5205/A205 11000
31% variant(140] irldle0

_images/xsi_afwindow_submission.png
Property Panel

~ afSubmitProperties
Submission | Scheduling VariRender

pass

Take Frame Range From Pass: r

Force Pass Frame Range

stfeme (__ |)
EndFrame (11

mree (1T T
Framesper (1)

Task
Simlate

Submit To Afanasy | Close Dilog |

Start Job Paused

_images/natron_afanasy_general.png
Ledolain] Rl

General Scheduling Multi-Write Node Info

Afanasy Job Name:
Get Frame Range From Project Settigs.
First Frame: (2
Last Frame: |32
Increment: [1
Frames Per Task: [2
sequential: [1

Send Afanasy Job
Start Job Paused:

_images/natron_afanasy_multiwrite.png
8@ e R 3)
“General Scheduling Multi-Write Node Info

Connected Nodes Are Independent:
Wait Whole Frame Range:
Force Upstream Frame Range:

